스텔스 주소 편집하기

이동: 둘러보기, 검색

경고: 로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다. 로그인하거나 계정을 생성하면 편집자가 아이디(ID)으로 기록되고, 다른 장점도 있습니다.

편집을 되돌릴 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 저장해주세요.
최신판 당신의 편집
1번째 줄: 1번째 줄:
 
[[파일:스텔스주소 구조.PNG|썸네일|600픽셀|'''스텔스 주소 구조''']]
 
[[파일:스텔스주소 구조.PNG|썸네일|600픽셀|'''스텔스 주소 구조''']]
 
 
'''스텔스 주소'''<!--스텔스주소, 스탤스 주소-->(Stealth Address)는 수신자를 대신하여 임의로 생성된 일회용 주소를 사용하는 것이다. 스텔스 주소를 통해 개인 정보를 강화할 수 있다. 또한 이것은 [[비트코인]] 송신자가 비트코인 수신자에게 새 주소를 생성해 제공하도록 하는 비트코인의 최신 기능이다. 그리고 특정 비트코인 거래가 어떤 특정 사용자에게 속하는지 블록체인 모니터링을 통해 정확히 식별하는 것을 방지한다.
 
'''스텔스 주소'''<!--스텔스주소, 스탤스 주소-->(Stealth Address)는 수신자를 대신하여 임의로 생성된 일회용 주소를 사용하는 것이다. 스텔스 주소를 통해 개인 정보를 강화할 수 있다. 또한 이것은 [[비트코인]] 송신자가 비트코인 수신자에게 새 주소를 생성해 제공하도록 하는 비트코인의 최신 기능이다. 그리고 특정 비트코인 거래가 어떤 특정 사용자에게 속하는지 블록체인 모니터링을 통해 정확히 식별하는 것을 방지한다.
  
7번째 줄: 6번째 줄:
  
 
== 등장배경 ==
 
== 등장배경 ==
가장 기본적인 스텔스 주소 체계는 2011년 [[바이트 코인]] 이라는 비트코인 포럼 멤버가 처음 개발했다. [[타원곡선]] [[디피-헬만]](ECDH) 프로토콜을 사용한다. 기본 스텔스 주소 프로토콜(BSAP)의 디자인 결함이 있어 그를 해결하기 위해, 2013년 [[크립토 노트]](Crypto Note) 백서의 니콜라스 반 세이버 하겐(Nicolas van Saberhagen)이 향상된 스텔스 주소 프로토콜(ISAP)을 만들었다. 이후 2014년에 비트코인 프로토콜에서 [[피터 토드]](Peter Todd)가 그 프로토콜을 수정하였다. 향상된 스텔스 주소 프로토콜은 기본 스텔스 주소 프로토콜의 확장 버전이다. 같은 2014년에 [[리놈스터]] / [[에스디코인]] 으로 알려진 개발자가 향상된 스텔스 주소 프로토콜의 개인 지출 키 초과 사용 제한을 없애고자 하였다. 그래서 그는 효율적이면서 분산된 익명 지갑 솔루션인 쉐도우센드(ShadowSend)를 만들기 위해 이중 키 향상 스텔스 주소 프로토콜(DKSAP)를 개발했다. 그 이후 이 프로토콜은 모네로, [[사무라이 월렛]](Samourai Wallet) 및 [[토큰페이]] 를 포함하여 여러 암호화폐 시스템에서 구현되었다. 이 프로토콜은 두 가지 암호화 키, 즉 스캔 키 쌍과 지출 키 쌍을 활용한다. 그리고 트랜잭션 당 일회성 지불 주소를 계산한다.
+
가장 기본적인 스텔스 주소 체계는 2011년 [[바이트 코인]] 이라는 비트코인 포럼 멤버가 처음 개발했다. [[타원곡선]] [[디피-헬만]](ECDH) 프로토콜을 사용한다. 기본 스텔스 주소 프로토콜(BSAP)의 디자인 결함이 있어 그를 해결하기 위해, 2013년 [[크립토 노트]](Crypto Note) 백서의 니콜라스 반 세이버 하겐(Nicolas van Saberhagen)이 향상된 스텔스 주소 프로토콜(ISAP)을 만들었다. 이후 2014년에 비트코인 프로토콜에서 [[피터 토드]](Peter Todd)가 그 프로토콜을 수정하였다. 향상된 스텔스 주소 프로토콜은 기본 스텔스 주소 프로토콜의 확장 버전이다. 같은 2014년에 [[리놈스터]] / [[에스디코인]] 으로 알려진 개발자가 향상된 스텔스 주소 프로토콜의 개인 지출 키 초과 사용 제한을 없애고자 하였다. 그래서 그는 효율적이면서 분산된 익명 지갑 솔루션인 쉐도우센드(ShadowSend)를 만들기 위해 이중 키 향상 스텔스 주소 프로토콜(DKSAP)를 개발했다. 그 이후 이 프로토콜은 모네로, [[사무라이 월렛]](Samourai Wallet) 및 [[토큰페이]] 를 포함하여 여러 암호 화폐 시스템에서 구현되었다. 이 프로토콜은 두 가지 암호화 키, 즉 스캔 키 쌍과 지출 키 쌍을 활용한다. 그리고 트랜잭션 당 일회성 지불 주소를 계산한다.
  
 
== 특징 ==
 
== 특징 ==
스텔스 주소는 모네로의 고유한 개인정보 보호의 중요한 기능이다. 이 기능은 보낸 사람이 받는 사람을 대신하여 모든 트랜잭션에 대해 임의의 일회용 주소를 만들도록 한다. 그를 통해 수신자는 하나의 주소만 게시할 수 있다. 그러나 수신 받는 모든 지급액은 수신자가 게시한 주소 또는 다른 거래 주소로 다시 연결할 수 없는 블록체인의 고유 주소로 이동한다. 그렇게 하여 스텔스 주소를 사용하면 보낸 사람과 받는 사람만 금액이  전송된 위치를 결정할 수 있다. 그래서 수신자가 단일 주소를 알려주면 거래된 금액은 별도의 고유 주소를 가지고 이동하게 된다. 그래서 스텔스 주소를 사용하면 송신자 간의 주소가 연결되지 못해서 추적이 어려워진다. 이렇게 거래 금액뿐만 아니라 주소의 송신 및 수신도 기본적으로 난독화되어 모네로 [[블록체인]]의 트랜잭션은 특정 사용자 또는 실제 아이디(ID)에 연결될 수 없다.<ref name="눈">IoTeX, 〈[http://a.to/19ppDKR 블록체인 프라이버시 강화 기술 시리즈 — Stealth Address (I)]〉, 《해커눈》, 2018-05-15 </ref>
+
스텔스 주소는 모네로의 고유한 개인정보 보호의 중요한 기능이다. 이 기능은 보낸 사람이 받는 사람을 대신하여 모든 트랜잭션에 대해 임의의 일회용 주소를 만들도록 한다. 그를 통해 수신자는 하나의 주소만 게시할 수 있다. 그러나 수신 받는 모든 지급액은 수신자가 게시한 주소 또는 다른 거래 주소로 다시 연결할 수 없는 블록체인의 고유 주소로 이동한다. 그렇게 하여 스텔스 주소를 사용하면 보낸 사람과 받는 사람만 금액이  전송된 위치를 결정할 수 있다. 그래서 수신자가 단일 주소를 알려주면 거래된 금액은 별도의 고유 주소를 가지고 이동하게 된다. 그래서 스텔스 주소를 사용하면 송신자 간의 주소가 연결되지 못해서 추적이 어려워진다. 이렇게 거래 금액뿐만 아니라 주소의 송신 및 수신도 기본적으로 난독화되어 모네로 [[블록체인]]의 트랜잭션은 특정 사용자 또는 실제 아이디(ID)에 연결될 수 없다.<ref name="눈">IoTeX, 〈[http://a.to/19ppDKR 블록 체인 프라이버시 강화 기술 시리즈 — Stealth Address (I)]〉, 《해커눈》, 2018-05-15 </ref>
  
 
: '''스텔스 주소 장점'''
 
: '''스텔스 주소 장점'''
26번째 줄: 25번째 줄:
 
# 수신한 거래는 별도의 고유 주소를 가지고 이동하게 된다.
 
# 수신한 거래는 별도의 고유 주소를 가지고 이동하게 된다.
 
# 수신자와 송신자 간의 주소가 연결되지 못해서 추적이 어려워진다.
 
# 수신자와 송신자 간의 주소가 연결되지 못해서 추적이 어려워진다.
 +
 +
: '''기본 스텔스 주소 프로토콜<!--BSAP-->(Basic Stealth Address Protocol, [[BSAP]])'''
 +
: 기본 스텔스 주소 프로토콜의 설계에는 두 가지 주요 문제가 있다. 첫 번째로 임시 주소는 두 통신 개체 사이에서 고정하게 된다. 따라서 이개체 간의 트랜잭션을 쉽게 연결할 수 있다. 두 번째 발신자와 수신자 모두 개인 키 c를 계산할 수 있다. 결과적으로, 수취인이 적시에 지불하지 않으면 발신자는 마음을 바꾸고 돈을 돌려받을 수 있다. 작동 방법은 다음과 같다.
 +
 +
# 발신자와 수신자는 각각 개인 / 공개키 쌍(a, A) 및 (b, B)을 갖는다. 여기서 A = a XG 및 B = b XG 및 G는 타원 곡선 그룹의 기준점이다.
 +
# 발신자와 수신자 모두 [[타원곡선]] [[디피-헬만]](ECDH) 을 사용하여 공유 비밀 c를 계산할 수 있다. c = H (a X b X G) = H (a X B) = H (b X A) , 여기서 H (X)는 암호화 해시 함수이다 .
 +
# 발신자는 단순히 지불을 보내기 위해 임시 주소로 c XG 를 사용한다.
 +
# 수신자는 블록체인을 적극적으로 모니터링하고 일부 트랜잭션이 목적 목적지 주소 c XG 로 전송되었는지 확인하고, 있는 경우 해당 개인 키 c를 사용하여 지불 할 수 있다.
 +
 +
: '''향상된 스텔스 주소 프로토콜<!--ISAP-->(Improved Stealth Address Protocol, [[ISAP]])'''
 +
: 향상된 스텔스 주소 프로토콜은 앞서 언급한 기본 스텔스 주소 프로토콜의 설계 결함을 수정한 것이다. 그러나 블록체인 노드는 여전히 개인 키 c를 사용하여 의도된 주소 c XG + B에 대한 블록체인을 능동적으로 스캔해야 한다. 이는 개인 키를 안전하게 저장하는 일반적인 관행과 상반되며, 개인 지출 키를 지속적으로 사용하면 손상될 위험이 많이 증가한다. 추가 키 파생 기술은 다음과 같다.
 +
 +
# 수신기에는 개인 / 공개키 쌍 (b, B)가 있으며 여기서 B = b XG 및 G는 타원 곡선 그룹의 기준점이다.
 +
# 발신자는 임시 키 페어 (r, R)를 생성하며, 여기서 R = r XG 는 트랜잭션과 함께 전송한다.
 +
# 발신자와 수신자 모두 타원곡선 디피-헬만(ECDH)을 사용하여 공유 비밀 c를 계산할 수 있다. c = H (r X b X G) = H (r X B) = H (b X R) , 여기서 H (X)는 암호화 해시 함수이다.
 +
# 발신자는 결제를 위해 임시 목적지 주소로 c XG + B를 사용한다.
 +
# 수신자는 블록체인을 적극적으로 모니터링하고 일부 트랜잭션이 주소 c XG + B로 전송되었는지 확인한다. 그렇다면 해당 개인 키 c + b를 사용하여 지불을 할 수 있으며, 임시 개인 키 c + b는 수신자만 계산할 수 있다.
 +
 +
: '''이중 키 스텔스 주소 프로토콜<!--DKSAP-->(Dual-Key Stealth Address Protocol, [[DKSAP]])'''
 +
: 감사자 또는 프록시 서버가 시스템에 존재하는 경우 이중 키 스텔스 주소 프로토콜에서, 수신기는 개인 키 스캔 공유 할 수와 공개 키를 보내는 B 감사 / 프록시 서버와 그 실체에 블록체인 트랜잭션을 검색 할 수 있도록 한다. 수신자를 대신해 임시 개인 키 c + b를 계산하고 지불을 할 수 없다. 트랜잭션 당 일회성 지불 주소로는 다음과 같다.
 +
 +
# 수신자는 두 개의 개인 / 공개키 쌍 (s, S) 및 (b, B)을 가지며, 여기서 S = s XG 및 B = b XG 는 각각 스캔 공개 키 및 공개키 지출이다. 여기서 G는 타원 곡선 그룹의 기준점이다.
 +
# 발신자는 임시 키 페어 ( r, R )를 생성하며, 여기서 R = r XG 는 트랜잭션과 함께 전송한다.
 +
# 발신자와 수신자 모두 타원곡선 디피-헬만(ECDH)을 사용하여 공유 비밀 c를 계산할 수 있다. c = H (r X s X G) = H (r X S) = H (s X R) , 여기서 H (X)는 암호화 해시 함수이다.
 +
# 발신자는 결제를 위해 임시 목적지 주소로 c XG + B를 사용
 +
# 수신자는 블록체인을 적극적으로 모니터링하고 일부 트랜잭션이 목적 목적지 주소 c XG + B로 전송되었는지 확인한다. 전자 지갑의 암호화 여부에 따라 수신자는 동일한 대상 주소를 두 가지 방식, 즉 c XG + B = (c + b) X G로 계산할 수 있으며, 일치하는 항목이 있으면 해당 개인 키 c + b를 사용하여 지불 할 수 있다. 임시 개인 키 c + b는 수신자만 계산할 수 있다.
  
 
: '''스텔스다운 스텔스 주소(암호화)'''
 
: '''스텔스다운 스텔스 주소(암호화)'''
40번째 줄: 65번째 줄:
 
# 이 버퍼를 SHA256으로 이중 해싱하여 현재 주소 버퍼의 해시 섬을 생성하고 체크 섬의 처음 4바이트를 주소 버퍼에 추가한다.
 
# 이 버퍼를 SHA256으로 이중 해싱하여 현재 주소 버퍼의 해시 섬을 생성하고 체크 섬의 처음 4바이트를 주소 버퍼에 추가한다.
 
# 마지막으로 base58 주소를 인코딩한다. 빠짐 없이 제대로 진행되었다면, 주소는 smY로 시작한다.
 
# 마지막으로 base58 주소를 인코딩한다. 빠짐 없이 제대로 진행되었다면, 주소는 smY로 시작한다.
 
== 종류 ==
 
* '''기본 스텔스 주소 프로토콜<!--BSAP-->(Basic Stealth Address Protocol, [[BSAP]])'''
 
: 기본 스텔스 주소 프로토콜의 설계에는 두 가지 주요 문제가 있다. 첫 번째로 임시 주소는 두 통신 개체 사이에서 고정하게 된다. 따라서 이개체 간의 트랜잭션을 쉽게 연결할 수 있다. 두 번째 발신자와 수신자 모두 개인 키 c를 계산할 수 있다. 결과적으로, 수취인이 적시에 지불하지 않으면 발신자는 마음을 바꾸고 돈을 돌려받을 수 있다. 작동 방법은 다음과 같다.
 
 
# 발신자와 수신자는 각각 개인 / 공개키 쌍(a, A) 및 (b, B)을 갖는다. 여기서 A = a × G 및 B = b ×G 및 G는 타원 곡선 그룹의 기준점이다.
 
# 발신자와 수신자 모두 [[타원곡선]] [[디피-헬만]](ECDH) 을 사용하여 공유 비밀 c를 계산할 수 있다. c = H (a × b × G) = H (a × B) = H (b × A) , 여기서 H (×)는 암호화 해시 함수이다 .
 
# 발신자는 단순히 지불을 보내기 위해 임시 주소로 c × G 를 사용한다.
 
# 수신자는 블록체인을 적극적으로 모니터링하고 일부 트랜잭션이 목적 목적지 주소 c × G 로 전송되었는지 확인하고, 있는 경우 해당 개인 키 c를 사용하여 지불 할 수 있다.
 
 
* '''향상된 스텔스 주소 프로토콜<!--ISAP-->(Improved Stealth Address Protocol, [[ISAP]])'''
 
: 향상된 스텔스 주소 프로토콜은 앞서 언급한 기본 스텔스 주소 프로토콜의 설계 결함을 수정한 것이다. 그러나 블록체인 노드는 여전히 개인 키 c를 사용하여 의도된 주소 c × G + B에 대한 블록체인을 능동적으로 스캔해야 한다. 이는 개인 키를 안전하게 저장하는 일반적인 관행과 상반되며, 개인 지출 키를 지속적으로 사용하면 손상될 위험이 많이 증가한다. 추가 키 파생 기술은 다음과 같다.
 
 
# 수신기에는 개인 / 공개키 쌍 (b, B)가 있으며 여기서 B = b × G 및 G는 타원 곡선 그룹의 기준점이다.
 
# 발신자는 임시 키 페어 (r, R)를 생성하며, 여기서 R = r × G 는 트랜잭션과 함께 전송한다.
 
# 발신자와 수신자 모두 타원곡선 디피-헬만(ECDH)을 사용하여 공유 비밀 c를 계산할 수 있다. c = H (r × b × G) = H (r × B) = H (b × R) , 여기서 H (×)는 암호화 해시 함수이다.
 
# 발신자는 결제를 위해 임시 목적지 주소로 c × G + B를 사용한다.
 
# 수신자는 블록체인을 적극적으로 모니터링하고 일부 트랜잭션이 주소 c × G + B로 전송되었는지 확인한다. 그렇다면 해당 개인 키 c + b를 사용하여 지불을 할 수 있으며, 임시 개인 키 c + b는 수신자만 계산할 수 있다.
 
 
* '''이중 키 스텔스 주소 프로토콜<!--DKSAP-->(Dual-Key Stealth Address Protocol, [[DKSAP]])'''
 
: 감사자 또는 프록시 서버가 시스템에 존재하는 경우 이중 키 스텔스 주소 프로토콜에서, 수신기는 개인 키 스캔 공유 할 수와 공개 키를 보내는 B 감사 / 프록시 서버와 그 실체에 블록체인 트랜잭션을 검색 할 수 있도록 한다. 수신자를 대신해 임시 개인 키 c + b를 계산하고 지불을 할 수 없다. 트랜잭션 당 일회성 지불 주소로는 다음과 같다.
 
 
# 수신자는 두 개의 개인 / 공개키 쌍 (s, S) 및 (b, B)을 가지며, 여기서 S = s × G 및 B = b × G 는 각각 스캔 공개 키 및 공개키 지출이다. 여기서 G는 타원 곡선 그룹의 기준점이다.
 
# 발신자는 임시 키 페어 ( r, R )를 생성하며, 여기서 R = r × G 는 트랜잭션과 함께 전송한다.
 
# 발신자와 수신자 모두 타원곡선 디피-헬만(ECDH)을 사용하여 공유 비밀 c를 계산할 수 있다. c = H (r × s × G) = H (r × S) = H (s × R) , 여기서 H (×)는 암호화 해시 함수이다.
 
# 발신자는 결제를 위해 임시 목적지 주소로 c × G + B를 사용
 
# 수신자는 블록체인을 적극적으로 모니터링하고 일부 트랜잭션이 목적 목적지 주소 c × G + B로 전송되었는지 확인한다. 전자 지갑의 암호화 여부에 따라 수신자는 동일한 대상 주소를 두 가지 방식, 즉 c × G + B = (c + b) × G로 계산할 수 있으며, 일치하는 항목이 있으면 해당 개인 키 c + b를 사용하여 지불 할 수 있다. 임시 개인 키 c + b는 수신자만 계산할 수 있다.
 
  
 
== 활용 ==
 
== 활용 ==
74번째 줄: 72번째 줄:
 
링 서명과 스텔스 주소의 공통점 으로는 거래에서 보낸 사람과 받는 사람의 주소를 숨기는 데 사용된다. 이러한 주소의 난독화는 블록체인 분석을 사실상 불가능하게 만든다. 그렇기 때문에 모네로 블록체인을 탐색하거나 거래를 추적하는 것은 불가능하다.<ref>숀 오, 〈[http://a.to/19YAjQ8 토크노믹스: 블록체인이 가져올 차세대 비즈니스 경제학]〉, 《토머스 파워》 </ref>
 
링 서명과 스텔스 주소의 공통점 으로는 거래에서 보낸 사람과 받는 사람의 주소를 숨기는 데 사용된다. 이러한 주소의 난독화는 블록체인 분석을 사실상 불가능하게 만든다. 그렇기 때문에 모네로 블록체인을 탐색하거나 거래를 추적하는 것은 불가능하다.<ref>숀 오, 〈[http://a.to/19YAjQ8 토크노믹스: 블록체인이 가져올 차세대 비즈니스 경제학]〉, 《토머스 파워》 </ref>
  
* '''수신자 익명성''' : 모네로는 스텔스 주소 기능을 사용해 수신자의 주소를 외부에 노출하지 않는다. 일반적으로 [[암호화폐]]는 블록체인에서 전송을 시작하면 수신자의 계좌가 TX 형식으로 기록된다. 반면, [[모네로]]는 일회용 계좌를 생성하여 블록체인에 기록하기 때문에 수신자의 익명성이 가능해진다. 또한 모네로는 비트코인과 달리 2개의 키 체계를 이용해 암호화폐를 전송할 때 사용하는 사용 키와 계좌 잔액 및 전송내역을 보고자 할 때 사용하는 읽기 키 두 가지를 이용한다.
+
: '''수신자 익명성'''
 +
: 모네로는 스텔스 주소 기능을 사용해 수신자의 주소를 외부에 노출하지 않는다. 일반적으로 [[암호화폐]]는 블록체인에서 전송을 시작하면 수신자의 계좌가 TX 형식으로 기록된다. 반면, [[모네로]]는 일회용 계좌를 생성하여 블록체인에 기록하기 때문에 수신자의 익명성이 가능해진다. 또한 모네로는 비트코인과 달리 2개의 키 체계를 이용해 암호화폐를 전송할 때 사용하는 사용 키와 계좌 잔액 및 전송내역을 보고자 할 때 사용하는 읽기 키 두 가지를 이용한다.
  
* '''스텔스 주소 변환''' : 사용자가 모네로를 사용한 순간 개인 사용 키와 개인 읽기 키가 지급되고, 수신자가 전송을 받으면 위 2개의 키를 기반으로 공개 사용키, 공개 읽기 키가 만들어지는데 여기에 임의의 데이터가 합쳐져 스텔스 주소로 변환된다.<ref>빗썸 - Bithumb, 〈[https://www.facebook.com/bithumb/posts/1926020520773857/ 모네로는 어떤 암호화폐인가요? #2모네로는 어떤 암호화폐인가요? #2]〉, 《페이스북》, 2018-01-11 </ref>
+
: '''스텔스 주소 변환'''
 +
: 사용자가 모네로를 사용한 순간 개인 사용 키와 개인 읽기 키가 지급되고, 수신자가 전송을 받으면 위 2개의 키를 기반으로 공개 사용키, 공개 읽기 키가 만들어지는데 여기에 임의의 데이터가 합쳐져 스텔스 주소로 변환된다.<ref>빗썸 - Bithumb, 〈[https://www.facebook.com/bithumb/posts/1926020520773857/ 모네로는 어떤 암호화폐인가요? #2모네로는 어떤 암호화폐인가요? #2]〉, 《페이스북》, 2018-01-11 </ref>
  
 
=== 다크월렛(Dark Wallet) ===
 
=== 다크월렛(Dark Wallet) ===
84번째 줄: 84번째 줄:
  
 
===블록체인 기반 사물 인터넷(IoT)===
 
===블록체인 기반 사물 인터넷(IoT)===
스텔스 주소는 블록체인 트랜잭션 출력을 수신자의 지갑 주소와 공개적으로 연결하는 것을 방지하고 트랜잭션의 실제 대상 주소를 숨긴다. 스텔스 주소는 암호화폐 네트워크에 효과적인 개인 정보 보호 기술을 제공하기 때문에, 블록체인 노드는 모든 거래를 적극적으로 모니터링하고 취지 대상 주소를 계산해야 한다. 그렇기 때문에 블록체인 기반 사물인터넷 시스템을 위한 더 빠른 이중 키 스텔스 주소 프로토콜-[[사물인터넷]]이 필요하다. 이 사물 인터넷은 DKSAP-IoTTLS 세션 재개와 유사한 기술을 사용하여 두 통신 피어 간에 성능을 동시에 향상시키고 트랜잭션 크기를 줄인다. 또한 이론적 분석과 임베디드 컴퓨팅 플랫폼에 대한 광범위한 실험은 이중 키 스텔스 주소 프로토콜-사물인터넷이 최신 방식과 비교할 때 계산 오버헤드를 최소 50% 줄일 수 있다는 것을 보여준다. <ref>신신 팬, 〈[https://link.springer.com/chapter/10.1007/978-3-319-94478-4_9 블록체인 기반 사물 인터넷 시스템을 위한 더 빠른 이중 키 스텔스 주소]〉, 《스프링거 링크》, 2018-05-22 </ref>
+
스텔스 주소는 블록체인 트랜잭션 출력을 수신자의 지갑 주소와 공개적으로 연결하는 것을 방지하고 트랜잭션의 실제 대상 주소를 숨긴다. 스텔스 주소는 암호화폐 네트워크에 효과적인 개인 정보 보호 기술을 제공하기 때문에, 블록체인 노드는 모든 거래를 적극적으로 모니터링하고 취지 대상 주소를 계산해야 한다. 그렇기 때문에 블록체인 기반 사물인터넷 시스템을 위한 더 빠른 이중 키 스텔스 주소 프로토콜-[[사물인터넷]]이 필요하다. 이 사물 인터넷은 DKSAP-IoTTLS 세션 재개와 유사한 기술을 사용하여 두 통신 피어 간에 성능을 동시에 향상시키고 트랜잭션 크기를 줄인다. 또한 이론적 분석과 임베디드 컴퓨팅 플랫폼에 대한 광범위한 실험은 이중 키 스텔스 주소 프로토콜-사물인터넷이 최신 방식과 비교할 때 계산 오버헤드를 최소 50% 줄일 수 있다는 것을 보여준다. <ref>신신 팬, 〈[https://link.springer.com/chapter/10.1007/978-3-319-94478-4_9 블록 체인 기반 사물 인터넷 시스템을위한 더 빠른 이중 키 스텔스 주소]〉, 《스프링거 링크》, 2018-05-22 </ref>
  
이중 키 스텔스 주소 프로토콜(Dual-Key Stealth Address Protocol)은 거래 수신자에게 강력한 익명성을 제공하며 실제로 이후 통신이 불가능하도록 금액 거래를 만든다. 그러나 이 접근 법은 블록체인 노드가 블록체인에서 일치하는 해당 송신 주소를 찾기 위해서 계속해서 계산을 해야 한다는 단점이 있다. 그리고 이 과정은 컴퓨터에서는 적용할 수 있지만, 자원이 제한된 사물인터넷(IoT) 장치에서는 해결해야 할 과제가 있다. 그 과제는 바로 이중 키 스텔스 주소 프로토콜을 통한 거래 과정을 블록체인 기반 사물인터넷 시스템에 적용 할 수 있는가 하는 것이다. 사물 인터넷 시스템 같은 경우에는 임시 키가 있어 비밀 주소를 사용하는 트랜잭션을 쉽게 식별할 수 있다, 그래서 개인 정보가 약간 누출 될 가능성이 있다. 현재 스텔스 주소를 사용하면서 임시 키가 있을 때 이러한 개인 정보 손실을 줄일 수 있는 아이오텍스(IoTeX)가 이러한 문제를 어떻게 해결할 것인지 연구하고 있다.<ref name="눈"></ref>
+
이중 키 스텔스 주소 프로토콜(DKSAP)은 거래 수신자에게 강력한 익명성을 제공하며 실제로 이후 통신이 불가능하도록 금액 거래를 만든다. 그러나 이 접근 법은 블록체인 노드가 블록체인에서 일치하는 해당 송신 주소를 찾기 위해서 계속해서 계산을 해야 한다는 단점이 있다. 그리고 이 과정은 컴퓨터에서는 적용할 수 있지만, 자원이 제한된 사물인터넷(IoT) 장치에서는 해결해야 할 과제가 있다. 그 과제는 바로 이중 키 스텔스 주소 프로토콜을 통한 거래 과정을 블록체인 기반 사물인터넷 시스템에 적용 할 수 있는가 하는 것이다. 사물 인터넷 시스템 같은 경우에는 임시 키가 있어 비밀 주소를 사용하는 트랜잭션을 쉽게 식별할 수 있다, 그래서 개인 정보가 약간 누출 될 가능성이 있다. 현재 스텔스 주소를 사용하면서 임시 키가 있을 때 이러한 개인 정보 손실을 줄일 수 있는 아이오텍스(IoTeX)가 이러한 문제를 어떻게 해결할 것인지 연구하고 있다.<ref name="눈"></ref>
  
 
{{각주}}
 
{{각주}}
95번째 줄: 95번째 줄:
 
* 김문수, 〈[http://a.to/19Nx3DT 알면 돈 되는 알트코인 30선: 블록체인 혁명의 주역들]〉, 《머니넷》
 
* 김문수, 〈[http://a.to/19Nx3DT 알면 돈 되는 알트코인 30선: 블록체인 혁명의 주역들]〉, 《머니넷》
 
* 숀 오, 〈[http://a.to/19YAjQ8 토크노믹스: 블록체인이 가져올 차세대 비즈니스 경제학]〉, 《토머스 파워》
 
* 숀 오, 〈[http://a.to/19YAjQ8 토크노믹스: 블록체인이 가져올 차세대 비즈니스 경제학]〉, 《토머스 파워》
* IoTeX, 〈[http://a.to/19ppDKR 블록체인 프라이버시 강화 기술 시리즈 — Stealth Address (I)]〉, 《해커눈》, 2018-05-15
+
* IoTeX, 〈[http://a.to/19ppDKR 블록 체인 프라이버시 강화 기술 시리즈 — Stealth Address (I)]〉, 《해커눈》, 2018-05-15
 
* JAKE FRANKENFIELD, 〈[https://www.investopedia.com/terms/s/stealth-address-cryptocurrency.asp 스텔스 주소 (암호화)]〉, 《인베스토피아》, 2018-03-22
 
* JAKE FRANKENFIELD, 〈[https://www.investopedia.com/terms/s/stealth-address-cryptocurrency.asp 스텔스 주소 (암호화)]〉, 《인베스토피아》, 2018-03-22
 
* 비 솔라 아솔로, 〈[https://www.mycryptopedia.com/everything-need-know-stealth-addresses/ 스텔스 주소 란 무엇입니까?]〉, 《마이크립토피디아》, 2018-11-01
 
* 비 솔라 아솔로, 〈[https://www.mycryptopedia.com/everything-need-know-stealth-addresses/ 스텔스 주소 란 무엇입니까?]〉, 《마이크립토피디아》, 2018-11-01
* 신신 팬, 〈[https://link.springer.com/chapter/10.1007/978-3-319-94478-4_9 블록체인 기반 사물 인터넷 시스템을 위한 더 빠른 이중 키 스텔스 주소]〉, 《스프링거 링크》, 2018-05-22
+
* 신신 팬, 〈[https://link.springer.com/chapter/10.1007/978-3-319-94478-4_9 블록 체인 기반 사물 인터넷 시스템을위한 더 빠른 이중 키 스텔스 주소]〉, 《스프링거 링크》, 2018-05-22
 
* 마 프메, 〈[https://dev.to/marpme/stealth-addressing-in-depth-13-7jk 스텔스 주소 지정 (1/3)]〉, 《DEV》, 2018-10-20
 
* 마 프메, 〈[https://dev.to/marpme/stealth-addressing-in-depth-13-7jk 스텔스 주소 지정 (1/3)]〉, 《DEV》, 2018-10-20
  

해시넷에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다 (자세한 사항은 해시넷:저작권 문서를 보세요). 저작권이 있는 내용을 허가 없이 저장하지 마세요!

취소 | 편집 도움말 (새 창에서 열림)