다중우주 편집하기

이동: 둘러보기, 검색

경고: 로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다. 로그인하거나 계정을 생성하면 편집자가 아이디(ID)으로 기록되고, 다른 장점도 있습니다.

편집을 되돌릴 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 저장해주세요.
최신판 당신의 편집
9번째 줄: 9번째 줄:
 
다중우주 아이디어는 한둘이 아니다. 이들을 체계적으로 분류한 수많은 방법 중 가장 널리 알려진 분류법은 미국 [[매사추세츠 공과대학교]](MIT) 물리학자인 [[맥스 테그마크]](Max Tegmark)가 논문에서 밝힌 다중우주 4단계 분류법이다.다.<ref>〈[https://en.wikipedia.org/wiki/Max_Tegmark Max Tegmark]〉 , 《위키백과》</ref> 맥스 테그마크는 수많은 다중우주를 분리하고 정리하기 위해 논문 '평행우주'에서 제4단계 분류법을 제시하였다. 1단계는 관측범위 밖에 우주가 여전히 존재하며, 하나하나가 관측범위 내에서 독립된 우주를 구성한다는 주장이다. 물리법칙은 우리 우주와 동일하며, 우주가 무한이거나 충분히 크다면 이 우주들 속에 우리의 도플갱어도 발견할 수 있다. 2단계는 인플레이션 우주론과 관계가 있으며, 우리 우주와 물리법칙이 전혀 다른 새로운 우주다. 3단계는 양자역학에 나오는 다세계 해석이다. 세계는 지금 이 순간도 양자역학적 결정에 따라 무수히 많은 서로 다른 우주로 갈라지고 있다. 그 안에 사는 우리는 그저 하나의 우주만을 보고 있을 뿐이다. 4단계는 시뮬레이션 우주다. 정보에 의해 구축된 우주는 상상 가능한 모든 형태를 띌 수 있으며, 이들이 독립된 다중우주를 구성한다. 테그마크 교수의 분류법에 모든 학자들이 동의하는 것은 아니다. '멀티 유니버스'의 저자인 브라이언 그린(Brian Greene) 미국 컬럼비아대 물리학과 교수는 이 분류를 사용하지 않았다. 하지만 그가 주장한 다중우주의 순서는 4단계 우주와 거의 비슷하다.
 
다중우주 아이디어는 한둘이 아니다. 이들을 체계적으로 분류한 수많은 방법 중 가장 널리 알려진 분류법은 미국 [[매사추세츠 공과대학교]](MIT) 물리학자인 [[맥스 테그마크]](Max Tegmark)가 논문에서 밝힌 다중우주 4단계 분류법이다.다.<ref>〈[https://en.wikipedia.org/wiki/Max_Tegmark Max Tegmark]〉 , 《위키백과》</ref> 맥스 테그마크는 수많은 다중우주를 분리하고 정리하기 위해 논문 '평행우주'에서 제4단계 분류법을 제시하였다. 1단계는 관측범위 밖에 우주가 여전히 존재하며, 하나하나가 관측범위 내에서 독립된 우주를 구성한다는 주장이다. 물리법칙은 우리 우주와 동일하며, 우주가 무한이거나 충분히 크다면 이 우주들 속에 우리의 도플갱어도 발견할 수 있다. 2단계는 인플레이션 우주론과 관계가 있으며, 우리 우주와 물리법칙이 전혀 다른 새로운 우주다. 3단계는 양자역학에 나오는 다세계 해석이다. 세계는 지금 이 순간도 양자역학적 결정에 따라 무수히 많은 서로 다른 우주로 갈라지고 있다. 그 안에 사는 우리는 그저 하나의 우주만을 보고 있을 뿐이다. 4단계는 시뮬레이션 우주다. 정보에 의해 구축된 우주는 상상 가능한 모든 형태를 띌 수 있으며, 이들이 독립된 다중우주를 구성한다. 테그마크 교수의 분류법에 모든 학자들이 동의하는 것은 아니다. '멀티 유니버스'의 저자인 브라이언 그린(Brian Greene) 미국 컬럼비아대 물리학과 교수는 이 분류를 사용하지 않았다. 하지만 그가 주장한 다중우주의 순서는 4단계 우주와 거의 비슷하다.
  
===누벼이은 다중우주===
+
===1단계: 누벼이은 다중우주===
 
다중우주의 4단계 분류법 중 1단계는 관측범위 밖에 우주가 여전히 존재하며, 하나하나가 관측범위 내에서 독립된 우주를 구성한다는 주장이다. 관측 가능한 우주 범위 밖에서 우주가 멈춘다는 증거는 없다. 이런 우주가 하나하나의 우주를 구성한다고 보면 전체가 다중우주를 이룬다. 1단계 다중우주는 관측 한계를 벗어난 지역 너머에 존재하는 또다른 우주다. 이 우주의 특징은 우리 우주와 같은 물리법칙의 지배를 받는다는 점이다. 관측 가능한 우주의 범위는 반지름 약 420억 광년으로 한정돼 있다. 관측 수단인 빛이 그 이상의 우주를 안내하지 못하기 때문이다. 그 어떤 외계 지적생명체라 해도 마찬가지다. 반지름 420억 광년의 공간이 하나의 우주를 구성하며, 우주 밖에는 이런 우주가 바로 붙어서 늘어서 있다. 이 모습은 캡슐 모양의 우주가 계란판처럼 끝도 없이 늘어서 있는 모습과 비슷하다. 2003년 테그마크 교수의 계산에 따르면, 우리 우주 안에 있는 입자의 수는 10¹¹⁸개다. 입자 하나의 배열을 2진 부호로 계산하면 모든 입자가 만들 수 있는 배열의 경우의 수는 2¹⁰118개다. 이 가능성에 따라 배열된 우주를 하나씩 전부 세트로 갖추려면 얼마나 큰 공간이 필요한지도 계산했다. 지름이 10¹⁰118m 규모다. 다시 말하면 확률상 10¹⁰118m를 지날 때마다 지금 우리가 사는 우주와 똑같은 우주가 한 번은 되풀이된다는 뜻이다. 바로 여기에서 제1단계 다중우주가 생길 가능성이 태어난다. 테그마크 교수의 주장이 사실이고 만약 우주가 10¹⁰118m보다 크다면, 확률상 지금 우리가 살고 있는 우주와 입자의 배열 상태가 완전히 똑같은 우주가 다시 나올 가능성이 있다. 만약 우주의 크기가 무한이라면, 우리와 똑같은 우주 역시 무한 개 되풀이될 수 있다. 다시 말해 우리와 아주 비슷한 물리법칙의 지배를 받지만 은하나 물질, 생명체의 상태는 조금씩 다른 우주가 무한 개 있다는 뜻이다. 하지만 무한이라는 가정은 만만치 않은 가정이다. 이형목 서울대 물리천문학부 교수는 “‘물리적으로 정말 무한이 존재할 수 있는가’는 함부로 사용하기 어려운 주제”라고 말했다. 박병철 대진대 물리학과 교수는 “수학적으로도 대단히 까다로운 가정”이라고 말했다. 그린 교수도 '멀티 유니버스'에서 “우주의 크기가 무한이라면 시간이 0일 때 우주가 아주 작은 점이었다는 가정을 할 수 없다”는 예를 들고 있다. 무한은 작게 만들어도 무한이다. 하지만 대체적으로 누벼이은 다중우주를 부정하기는 쉽지 않다. 관측 범위 밖에서 우주가 갑자기 벼랑 끝처럼 끝나리라고 믿는 편이 더 부자연스럽다. 우주배경복사 관측위성 윌킨슨 마이크로파 비등방성 탐색기(WMAP)의 측정 결과도 우주가 무한하거나 적어도 대단히 클 가능성을 암시하고 있다. 윌킨슨 마이크로파 비등방성 탐색기와 은하 적색편이 측정 결과를 종합해 보면 우주에서 물질은 거리에 비례한다. 이는 물질이 우주에 걸쳐 균일하게 차 있다는 뜻이다. 관측 범위를 넘어서도 같은 양상을 보일 수 있다. 이형목 교수는 “지평선 부근에 있는 우주에 대한 연구가 충분하지는 않지만, 그 너머의 우주도 물리학적인 조건은 같다는 것이 현재의 결론”이라고 말했다.<ref name="1단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574420&cid=58941&categoryId=58957 누벼이은 다중우주 - 1단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
 
다중우주의 4단계 분류법 중 1단계는 관측범위 밖에 우주가 여전히 존재하며, 하나하나가 관측범위 내에서 독립된 우주를 구성한다는 주장이다. 관측 가능한 우주 범위 밖에서 우주가 멈춘다는 증거는 없다. 이런 우주가 하나하나의 우주를 구성한다고 보면 전체가 다중우주를 이룬다. 1단계 다중우주는 관측 한계를 벗어난 지역 너머에 존재하는 또다른 우주다. 이 우주의 특징은 우리 우주와 같은 물리법칙의 지배를 받는다는 점이다. 관측 가능한 우주의 범위는 반지름 약 420억 광년으로 한정돼 있다. 관측 수단인 빛이 그 이상의 우주를 안내하지 못하기 때문이다. 그 어떤 외계 지적생명체라 해도 마찬가지다. 반지름 420억 광년의 공간이 하나의 우주를 구성하며, 우주 밖에는 이런 우주가 바로 붙어서 늘어서 있다. 이 모습은 캡슐 모양의 우주가 계란판처럼 끝도 없이 늘어서 있는 모습과 비슷하다. 2003년 테그마크 교수의 계산에 따르면, 우리 우주 안에 있는 입자의 수는 10¹¹⁸개다. 입자 하나의 배열을 2진 부호로 계산하면 모든 입자가 만들 수 있는 배열의 경우의 수는 2¹⁰118개다. 이 가능성에 따라 배열된 우주를 하나씩 전부 세트로 갖추려면 얼마나 큰 공간이 필요한지도 계산했다. 지름이 10¹⁰118m 규모다. 다시 말하면 확률상 10¹⁰118m를 지날 때마다 지금 우리가 사는 우주와 똑같은 우주가 한 번은 되풀이된다는 뜻이다. 바로 여기에서 제1단계 다중우주가 생길 가능성이 태어난다. 테그마크 교수의 주장이 사실이고 만약 우주가 10¹⁰118m보다 크다면, 확률상 지금 우리가 살고 있는 우주와 입자의 배열 상태가 완전히 똑같은 우주가 다시 나올 가능성이 있다. 만약 우주의 크기가 무한이라면, 우리와 똑같은 우주 역시 무한 개 되풀이될 수 있다. 다시 말해 우리와 아주 비슷한 물리법칙의 지배를 받지만 은하나 물질, 생명체의 상태는 조금씩 다른 우주가 무한 개 있다는 뜻이다. 하지만 무한이라는 가정은 만만치 않은 가정이다. 이형목 서울대 물리천문학부 교수는 “‘물리적으로 정말 무한이 존재할 수 있는가’는 함부로 사용하기 어려운 주제”라고 말했다. 박병철 대진대 물리학과 교수는 “수학적으로도 대단히 까다로운 가정”이라고 말했다. 그린 교수도 '멀티 유니버스'에서 “우주의 크기가 무한이라면 시간이 0일 때 우주가 아주 작은 점이었다는 가정을 할 수 없다”는 예를 들고 있다. 무한은 작게 만들어도 무한이다. 하지만 대체적으로 누벼이은 다중우주를 부정하기는 쉽지 않다. 관측 범위 밖에서 우주가 갑자기 벼랑 끝처럼 끝나리라고 믿는 편이 더 부자연스럽다. 우주배경복사 관측위성 윌킨슨 마이크로파 비등방성 탐색기(WMAP)의 측정 결과도 우주가 무한하거나 적어도 대단히 클 가능성을 암시하고 있다. 윌킨슨 마이크로파 비등방성 탐색기와 은하 적색편이 측정 결과를 종합해 보면 우주에서 물질은 거리에 비례한다. 이는 물질이 우주에 걸쳐 균일하게 차 있다는 뜻이다. 관측 범위를 넘어서도 같은 양상을 보일 수 있다. 이형목 교수는 “지평선 부근에 있는 우주에 대한 연구가 충분하지는 않지만, 그 너머의 우주도 물리학적인 조건은 같다는 것이 현재의 결론”이라고 말했다.<ref name="1단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574420&cid=58941&categoryId=58957 누벼이은 다중우주 - 1단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
  
===인플레이션 다중우주===
+
===2단계: 인플레이션 다중우주===
 
2단계는 인플레이션 우주론과 관계가 있으며, 우리 우주와 물리법칙이 전혀 다른 새로운 우주다. 인플레이션 다중우주'는 '버블우주', '주머니우주', 또는 모양을 빗대어 '스위스 치즈 우주'라고도 부른다. 영원한 인플레이션 다중우주는 두 가지 형태로 묘사된다. 첫 번째는 영원한 인플레이션 이론을 처음 제시한 안드레이 린데(Andrei Linde) 미국 스탠퍼드대 물리학과 교수가 묘사한 포도송이 모양이다. 오늘날에는 테그마크 교수가 ‘빵 속 기포’라고 묘사한 형태로도 많이 표현된다. 2단계 다중우주는 우리 우주와 다른 물리법칙의 지배를 받는, 우리와 전혀 다른 다중우주가 존재한다고 본다. 인플레이션 이론은 우주가 밀도가 무한한 한 공간에서 시작됐으며, 초창기에 우주가 기하급수적으로 팽창하는 시기가 있었다고 설명하는 이론이다. 이 이론에서는 우주가 척력을 발생시키는 입자의 장으로 가득 차 있었다고 본다. 인플라톤장의 에너지가 높으면 인플레이션이 일어난다. 마치 높은 산 위의 공이 골짜기로 굴러 떨어지면 위치에너지를 방출하며 공의 속도를 높이듯, 인플라톤 에너지도 낮아지면서 뭔가 다른 일을 한다. 이때 인플라톤이 하는 일은 물질과 암흑물질을 만드는 것이다. 마치 수증기가 응결하듯 물질이 생기고, 물질이 양자역학적인 요동 때문에 지역적으로 조금씩 밀도를 달리하면 별과 은하가 생긴다. 인플레이션 우주론에서는 우주가 탄생 뒤 10⁻³⁰초만에 인플라톤이 높은 에너지 상태에서 낮은 상태로 뚝 떨어졌다고 본다. 하지만 그 짧은 사이에 인플라톤의 영향으로 공간은 10²⁵배로 팽창했다. 공간은 이후로도 지속적으로 팽창했고, 초기의 초고온 상태를 벗어나 차갑게 식어버렸다. 하지만 인플레이션 이론에 따르면, 우주가 아직 작을 때는 온도 등의 정보를 모든 곳과 서로 충분히 교환할 수 있었다. 그래서 전체적으로 온도가 균질해졌고, 137억 년이 오늘날까지도 우주 초창기에 최초로 방출한 빛이 남긴 온도 흔적은 균질하다. 우주 전체에서 겨우 1000분의 1 정도의 차이밖에 없을 정도다. 인플레이션 없이 이렇게 될 확률은 대단히 낮기 때문에, 인플레이션 이론은 우주의 탄생을 잘 설명해 준다는 평을 듣고 있다.
 
2단계는 인플레이션 우주론과 관계가 있으며, 우리 우주와 물리법칙이 전혀 다른 새로운 우주다. 인플레이션 다중우주'는 '버블우주', '주머니우주', 또는 모양을 빗대어 '스위스 치즈 우주'라고도 부른다. 영원한 인플레이션 다중우주는 두 가지 형태로 묘사된다. 첫 번째는 영원한 인플레이션 이론을 처음 제시한 안드레이 린데(Andrei Linde) 미국 스탠퍼드대 물리학과 교수가 묘사한 포도송이 모양이다. 오늘날에는 테그마크 교수가 ‘빵 속 기포’라고 묘사한 형태로도 많이 표현된다. 2단계 다중우주는 우리 우주와 다른 물리법칙의 지배를 받는, 우리와 전혀 다른 다중우주가 존재한다고 본다. 인플레이션 이론은 우주가 밀도가 무한한 한 공간에서 시작됐으며, 초창기에 우주가 기하급수적으로 팽창하는 시기가 있었다고 설명하는 이론이다. 이 이론에서는 우주가 척력을 발생시키는 입자의 장으로 가득 차 있었다고 본다. 인플라톤장의 에너지가 높으면 인플레이션이 일어난다. 마치 높은 산 위의 공이 골짜기로 굴러 떨어지면 위치에너지를 방출하며 공의 속도를 높이듯, 인플라톤 에너지도 낮아지면서 뭔가 다른 일을 한다. 이때 인플라톤이 하는 일은 물질과 암흑물질을 만드는 것이다. 마치 수증기가 응결하듯 물질이 생기고, 물질이 양자역학적인 요동 때문에 지역적으로 조금씩 밀도를 달리하면 별과 은하가 생긴다. 인플레이션 우주론에서는 우주가 탄생 뒤 10⁻³⁰초만에 인플라톤이 높은 에너지 상태에서 낮은 상태로 뚝 떨어졌다고 본다. 하지만 그 짧은 사이에 인플라톤의 영향으로 공간은 10²⁵배로 팽창했다. 공간은 이후로도 지속적으로 팽창했고, 초기의 초고온 상태를 벗어나 차갑게 식어버렸다. 하지만 인플레이션 이론에 따르면, 우주가 아직 작을 때는 온도 등의 정보를 모든 곳과 서로 충분히 교환할 수 있었다. 그래서 전체적으로 온도가 균질해졌고, 137억 년이 오늘날까지도 우주 초창기에 최초로 방출한 빛이 남긴 온도 흔적은 균질하다. 우주 전체에서 겨우 1000분의 1 정도의 차이밖에 없을 정도다. 인플레이션 없이 이렇게 될 확률은 대단히 낮기 때문에, 인플레이션 이론은 우주의 탄생을 잘 설명해 준다는 평을 듣고 있다.
  
 
이런 인플레이션 우주론에서 다중우주의 아이디어가 나온다. 인플레이션 우주론 중에는 인플레이션이 한번으로 끝나는 게 아니라, 우주 여기저기에서 계속해서 일어난다는 영원한 인플레이션(Eternal Inflation) 이론이 있다. 이것은 인플라톤 입자가 모든 상태가 가능한 양자역학의 불확정성 때문에 에너지 상태가 낮은 상태로 고정되지 않고 변덕스럽게 변해서다. 이런 인플라톤 장의 요동 때문에 우주에는 인플라톤 에너지의 크기가 미세하게 다른 지역이 여기저기 마구 섞여 있게 된다. 이 중 에너지가 상대적으로 큰 지역에서는 팽창이 일어날 것이고, 그렇지 않은 지역에서는 뻥 뚫린 공백이 생기고 안에 물질과 은하가 생길 것이다. 이 과정이 우주 대부분의 지역에서 영원히 계속된다. 그 결과, 우주 안팎에 우주가 새끼처럼 계속 생겨난다. 이 우주는 입자에 질량을 주는 힉스 등 입자의 특성이 다르다. 그래서 제1우주와 달리 물리법칙이 완전히 다른 우주가 태어날 가능성이 있다. 하지만 이 이론이 증명되려면 먼저 인플레이션 이론의 타당성이 증명돼야 한다. 인플레이션 이론 자체는 우주배경복사 관측으로 설득력을 지니게 됐지만, 1980년대에 로저 펜로즈(Roger Penrose) 영국 옥스퍼드대 물리학과 교수가 주장했던 인플레이션이 다른 형태로 일어나거나 심지어 일어나지 않고 지금과 같은 평평한 우주가 나타날 확률이 훨씬 높다는 주장인 초기조건 문제이 완전히 해결된 것은 아니다. 또 핵심인 인플라톤장은 측정을 통해 증명되지 않은 가설적인 장이다. 영원한 인플레이션이 만든 다중우주의 흔적을 검출하려는 시도도 있다. 매튜 클레번 미국 뉴욕대 물리학과 교수는 2011년 한 논문에서 “팽창하는 거품 다중우주가 서로 충돌할 수 있으며, 이 경우 우주배경복사에 특정한 무늬를 남긴다”고 주장했다. 하지만 개별 우주가 팽창하는 속도보다 우주끼리 서로 멀어지는 속도가 더 빨라 만나지 않는다는 주장도 있다. 우주마다 물리법칙이 다르다는 가정도 확실한 근거가 있는 것은 아니다. 조지 엘리스 남아프리카공화국 케이프타운대 수학과 석좌교수는 2011년 8월 미국 과학잡지 '사이언티픽 아메리칸' 기고문을 통해 “영원한 인플레이션 자체만으로 다중우주마다 다른 물리법칙이 있다는 결론을 낼 수 없다”고 지적했다.<ref name="2단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574421&cid=58941&categoryId=58957 인플레이션 다중우주 - 2단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
 
이런 인플레이션 우주론에서 다중우주의 아이디어가 나온다. 인플레이션 우주론 중에는 인플레이션이 한번으로 끝나는 게 아니라, 우주 여기저기에서 계속해서 일어난다는 영원한 인플레이션(Eternal Inflation) 이론이 있다. 이것은 인플라톤 입자가 모든 상태가 가능한 양자역학의 불확정성 때문에 에너지 상태가 낮은 상태로 고정되지 않고 변덕스럽게 변해서다. 이런 인플라톤 장의 요동 때문에 우주에는 인플라톤 에너지의 크기가 미세하게 다른 지역이 여기저기 마구 섞여 있게 된다. 이 중 에너지가 상대적으로 큰 지역에서는 팽창이 일어날 것이고, 그렇지 않은 지역에서는 뻥 뚫린 공백이 생기고 안에 물질과 은하가 생길 것이다. 이 과정이 우주 대부분의 지역에서 영원히 계속된다. 그 결과, 우주 안팎에 우주가 새끼처럼 계속 생겨난다. 이 우주는 입자에 질량을 주는 힉스 등 입자의 특성이 다르다. 그래서 제1우주와 달리 물리법칙이 완전히 다른 우주가 태어날 가능성이 있다. 하지만 이 이론이 증명되려면 먼저 인플레이션 이론의 타당성이 증명돼야 한다. 인플레이션 이론 자체는 우주배경복사 관측으로 설득력을 지니게 됐지만, 1980년대에 로저 펜로즈(Roger Penrose) 영국 옥스퍼드대 물리학과 교수가 주장했던 인플레이션이 다른 형태로 일어나거나 심지어 일어나지 않고 지금과 같은 평평한 우주가 나타날 확률이 훨씬 높다는 주장인 초기조건 문제이 완전히 해결된 것은 아니다. 또 핵심인 인플라톤장은 측정을 통해 증명되지 않은 가설적인 장이다. 영원한 인플레이션이 만든 다중우주의 흔적을 검출하려는 시도도 있다. 매튜 클레번 미국 뉴욕대 물리학과 교수는 2011년 한 논문에서 “팽창하는 거품 다중우주가 서로 충돌할 수 있으며, 이 경우 우주배경복사에 특정한 무늬를 남긴다”고 주장했다. 하지만 개별 우주가 팽창하는 속도보다 우주끼리 서로 멀어지는 속도가 더 빨라 만나지 않는다는 주장도 있다. 우주마다 물리법칙이 다르다는 가정도 확실한 근거가 있는 것은 아니다. 조지 엘리스 남아프리카공화국 케이프타운대 수학과 석좌교수는 2011년 8월 미국 과학잡지 '사이언티픽 아메리칸' 기고문을 통해 “영원한 인플레이션 자체만으로 다중우주마다 다른 물리법칙이 있다는 결론을 낼 수 없다”고 지적했다.<ref name="2단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574421&cid=58941&categoryId=58957 인플레이션 다중우주 - 2단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
  
===양자 다중세계===
+
===3단계: 양자 다중세계===
 
3단계는 양자역학에 나오는 다세계 해석이다. 양자역햑의 다세계 해석에 따르면, 우주는 양자의 파동함수에 따라 끊임없이 갈라진다. 하나하나의 우주가 다중우주를 구성한다. 3단계 다중우주에서는 양자역학의 기묘한 특성이 지금도 무한한 다중우주를 낳고 있다고 본다. 양자역학에서 가장 기묘한 성질은 양자역학의 심장에 숨어 있다. 바로 양자역학을 수학적으로 기술한 ‘슈뢰딩거 방정식’이 때때로 작동하지 않는다는 사실이다. 슈뢰딩거 방정식은 시간에 따른 양자의 상태를 담고 있는 함수, 즉 양자의 파동함수를 구하기 위한 방정식이다. 그런데 고전 물리학과 달리 슈뢰딩거 방정식의 해는 하나가 아니라 여러 가지 서로 다른 에너지 상태를 설명하는 파동함수로 나온다. 그래서 양자역학에서는 구한 해를 해석하는 일이 중요해졌다. 해석을 쉽게 이야기하면 “서로 다른 상태의 양자가 동시에 존재하는가 또는 그 중 하나만 존재하는가” 등을 결정하는 일이다. 예를 들어 책상 위 볼펜의 위치를 나타내는 파동함수를 구했는데, 볼펜의 위치가 책상 아래 30cm, 위 15cm, 5500km 상공, 이런 식으로 나왔다면 “볼펜이 세 군데에 동시에 존재하는가, 아니면 이 중 하나에 존재하는가”를 해석해야 한다. 고전 물리학에서는 볼펜 하나가 동시에 여러 곳에 존재하는 일은 불가능하다. 하지만 양자역학의 세계에서는 가능하다. 입자는 가능한 모든 곳에 동시에 위치할 수 있는 기묘한 성질이 있다. 책상 위, 아래, 5500km 상공 등 세 곳에 볼펜이 있을 수 있고, 그 중 어디에 있는지는 관측하기 전에는 알 수 없다. 그래서 같은 볼펜이지만 관측 전에는 여러 곳에 동시에 위치한 것과 마찬가지다. 이런 기묘한 성질을 설명하기 위해 물리학자들이 여러 가지 해석을 제시했다. 가장 유명한 것이 바로 세 곳에 “확률적으로 존재한다”는 해석이다. 이에 따르면 파동함수는 입자가 어떤 상태를 지닌 확률을 나타내는 함수가 된다. 입자의 위치가 각각 책상 아래, 위, 5500km 상공에 각각 90%, 9%, 1% 존재할 확률이라는 식이다. 그러다 관측을 하면 확률함수가 작동하지 않고 한 곳에 100% 존재하는 것으로 바뀐다. 기이해 보이지만, 이 해석은 양자역학을 이용한 수많은 계산과 예측에 잘 맞는다. 이를 받아들인 해석이 닐스 보어(Niels Bohr, 1885-1962)등이 확립한 ‘코펜하겐 해석’이며, 현재 양자역학 해석의 주류다.
 
3단계는 양자역학에 나오는 다세계 해석이다. 양자역햑의 다세계 해석에 따르면, 우주는 양자의 파동함수에 따라 끊임없이 갈라진다. 하나하나의 우주가 다중우주를 구성한다. 3단계 다중우주에서는 양자역학의 기묘한 특성이 지금도 무한한 다중우주를 낳고 있다고 본다. 양자역학에서 가장 기묘한 성질은 양자역학의 심장에 숨어 있다. 바로 양자역학을 수학적으로 기술한 ‘슈뢰딩거 방정식’이 때때로 작동하지 않는다는 사실이다. 슈뢰딩거 방정식은 시간에 따른 양자의 상태를 담고 있는 함수, 즉 양자의 파동함수를 구하기 위한 방정식이다. 그런데 고전 물리학과 달리 슈뢰딩거 방정식의 해는 하나가 아니라 여러 가지 서로 다른 에너지 상태를 설명하는 파동함수로 나온다. 그래서 양자역학에서는 구한 해를 해석하는 일이 중요해졌다. 해석을 쉽게 이야기하면 “서로 다른 상태의 양자가 동시에 존재하는가 또는 그 중 하나만 존재하는가” 등을 결정하는 일이다. 예를 들어 책상 위 볼펜의 위치를 나타내는 파동함수를 구했는데, 볼펜의 위치가 책상 아래 30cm, 위 15cm, 5500km 상공, 이런 식으로 나왔다면 “볼펜이 세 군데에 동시에 존재하는가, 아니면 이 중 하나에 존재하는가”를 해석해야 한다. 고전 물리학에서는 볼펜 하나가 동시에 여러 곳에 존재하는 일은 불가능하다. 하지만 양자역학의 세계에서는 가능하다. 입자는 가능한 모든 곳에 동시에 위치할 수 있는 기묘한 성질이 있다. 책상 위, 아래, 5500km 상공 등 세 곳에 볼펜이 있을 수 있고, 그 중 어디에 있는지는 관측하기 전에는 알 수 없다. 그래서 같은 볼펜이지만 관측 전에는 여러 곳에 동시에 위치한 것과 마찬가지다. 이런 기묘한 성질을 설명하기 위해 물리학자들이 여러 가지 해석을 제시했다. 가장 유명한 것이 바로 세 곳에 “확률적으로 존재한다”는 해석이다. 이에 따르면 파동함수는 입자가 어떤 상태를 지닌 확률을 나타내는 함수가 된다. 입자의 위치가 각각 책상 아래, 위, 5500km 상공에 각각 90%, 9%, 1% 존재할 확률이라는 식이다. 그러다 관측을 하면 확률함수가 작동하지 않고 한 곳에 100% 존재하는 것으로 바뀐다. 기이해 보이지만, 이 해석은 양자역학을 이용한 수많은 계산과 예측에 잘 맞는다. 이를 받아들인 해석이 닐스 보어(Niels Bohr, 1885-1962)등이 확립한 ‘코펜하겐 해석’이며, 현재 양자역학 해석의 주류다.
  
 
중요한 문제는 막상 관측을 통해 양자의 상태를 하나로 결정하는 과정은 슈뢰딩거 방정식에 없는 내용이라는 것이다. 즉, 방정식을 방정식에 없는 방법으로 푸는 셈이다. 코펜하겐 해석에서는 이를 파동함수가 붕괴한다고 표현하는데, 수학적으로 엄밀하지 못한 편의주의적 발상이라는 비판이 있다. 여기에서 세 번째 단계의 다중우주가 태어날 가능성이 나온다. 미국의 양자물리학자 휴 에버렛 3세(Huhg Everett III)는 코펜하겐 해석에 반대해 다세계 해석을 내놨다. 이 해석에 따르면, 관측을 해도 파동함수는 붕괴하지 않는다. 책상 아래, 위, 5500km 상공 모두에 볼펜이 존재한다. 다만 세 곳에 각각 볼펜이 있는 세계가 ‘갈라질’ 뿐이다. 그리고 갈라진 세계 하나하나가 다중우주다. 이 해석에 따르면 우리(정확히는 우리를 구성하는 입자들)가 행하는 모든 판단과 행동도 다 우주를 갈라놓는다. 일상에서도 무수히 많은 우주를 만들고 있다는 점이 다른 거대 다중우주 이론과 다른 점이다. 양자역학이 일으키는 기묘한 현상 자체는 이미 숱한 실험과 예측으로 거의 완벽하게 증명돼 있다. 하지만 그것이 코펜하겐 해석의 설명대로인지, 다중세계 해석대로인지를 알 방법은 현재로서는 없다. 특히 수많은 입자로 구성된 현실 우주가 정말 갈라질지 알 방법은 더더욱 요원하다. 데이비드 앨버트(David Albert) 미국 컬럼비아대 철학과 교수는 2007년 <네이처>와의 인터뷰에서 “어느 해석이 맞는지 확인하기 위해 중첩 현상을 실험하고 있지만, 1000개 입자를 실험한 정도에 불과하다”며 “일부 학자들이 106개 입자를 지닌 바이러스를 대상으로 실험할 계획”이라고 말했다. 문제는 세계의 갈라짐이 아니라는 지적도 있다. 박병철 대진대 물리학과 교수는 “세계가 무수히 갈라진다는 사실은 쉽게 제안할 수 있고, 이해하기도 쉽다. 그런데 그렇게 갈라진 세계의 나와, 마찬가지로 무수히 갈라진 세계의 너가 같은 세계에서 만난 것은 어떻게 이해해야 하나”하고 반문했다. 문제는 세계가 갈라지는 현상이 아니라, 그 세계가 나와 너에게 동일하다는 점이다. 이 점에 대해 확실한 설명이 다중세계 해석에는 없다.<ref name="3단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574422&cid=58941&categoryId=58957 양자 다중세계 - 3단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
 
중요한 문제는 막상 관측을 통해 양자의 상태를 하나로 결정하는 과정은 슈뢰딩거 방정식에 없는 내용이라는 것이다. 즉, 방정식을 방정식에 없는 방법으로 푸는 셈이다. 코펜하겐 해석에서는 이를 파동함수가 붕괴한다고 표현하는데, 수학적으로 엄밀하지 못한 편의주의적 발상이라는 비판이 있다. 여기에서 세 번째 단계의 다중우주가 태어날 가능성이 나온다. 미국의 양자물리학자 휴 에버렛 3세(Huhg Everett III)는 코펜하겐 해석에 반대해 다세계 해석을 내놨다. 이 해석에 따르면, 관측을 해도 파동함수는 붕괴하지 않는다. 책상 아래, 위, 5500km 상공 모두에 볼펜이 존재한다. 다만 세 곳에 각각 볼펜이 있는 세계가 ‘갈라질’ 뿐이다. 그리고 갈라진 세계 하나하나가 다중우주다. 이 해석에 따르면 우리(정확히는 우리를 구성하는 입자들)가 행하는 모든 판단과 행동도 다 우주를 갈라놓는다. 일상에서도 무수히 많은 우주를 만들고 있다는 점이 다른 거대 다중우주 이론과 다른 점이다. 양자역학이 일으키는 기묘한 현상 자체는 이미 숱한 실험과 예측으로 거의 완벽하게 증명돼 있다. 하지만 그것이 코펜하겐 해석의 설명대로인지, 다중세계 해석대로인지를 알 방법은 현재로서는 없다. 특히 수많은 입자로 구성된 현실 우주가 정말 갈라질지 알 방법은 더더욱 요원하다. 데이비드 앨버트(David Albert) 미국 컬럼비아대 철학과 교수는 2007년 <네이처>와의 인터뷰에서 “어느 해석이 맞는지 확인하기 위해 중첩 현상을 실험하고 있지만, 1000개 입자를 실험한 정도에 불과하다”며 “일부 학자들이 106개 입자를 지닌 바이러스를 대상으로 실험할 계획”이라고 말했다. 문제는 세계의 갈라짐이 아니라는 지적도 있다. 박병철 대진대 물리학과 교수는 “세계가 무수히 갈라진다는 사실은 쉽게 제안할 수 있고, 이해하기도 쉽다. 그런데 그렇게 갈라진 세계의 나와, 마찬가지로 무수히 갈라진 세계의 너가 같은 세계에서 만난 것은 어떻게 이해해야 하나”하고 반문했다. 문제는 세계가 갈라지는 현상이 아니라, 그 세계가 나와 너에게 동일하다는 점이다. 이 점에 대해 확실한 설명이 다중세계 해석에는 없다.<ref name="3단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574422&cid=58941&categoryId=58957 양자 다중세계 - 3단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
  
===시뮬레이션 다중우주===
+
===4단계: 시뮬레이션 다중우주===
 
다중우주의 4단계 분류법 중 1단계는 관측범위 밖에 우주가 여전히 존재하며, 하나하나가 관측범위 내에서 독립된 우주를 구성한다는 주장이다. 입자의 상태, 상수, 파동함수 등 물리학적 조건을 아예 자유자재로 바꾼 우주가 존재할 수 있다. 심지어 일부러 창조할 수 있다. 4단계 우주는 테그마크 교수가 직접 제안한 아이디어로, 추상적인 수학 속에 존재하는 우주다. 하지만 수학적 구조와 실제 물리적 우주 사이에 차이가 없다면 어떨까. 수학적으로 만들 수 있는 모든 우주가 실제로 존재한다고 말할 수 있다. 궤변 같지만 아주 틀린 말은 아니다. 물질을 구성하는 것은 입자고, 입자의 성질을 규정하는 것은 입자의 종류와 입자가 만드는 장이다. 입자의 장은 장 방정식으로 결정될 것이고, 입자는 지니고 있는 에너지, 파동함수 등에 따라 설명된다. 장과 장 방정식, 입자와 입자의 파동함수 등 물리적 우주와 수학 사이의 차이를 명확히 밝히기 어렵다. 굳이 구분하자면, 물리적 우주가 있고 이를 설명하기 위해 수학을 동원했다고 볼지, 반대로 수학이 있고 이것에 대응하는 물리적 우주가 있는지의 차이 정도다. 두 가지 입장 중 물리적 우주가 있고 수학은 설명하는 것이라는 입장을 제외하면, 우주는 곧 수학과 동일해진다. 즉 수나 방정식, 함수가 존재하면 대응하는 물리적 실체를 찾을 수 있다. 실제로 입자물리학의 많은 입자를 이런 순서로 찾기도 했다. 따라서 컴퓨터로 다양한 수학적 우주를 만들어 물리적 다중우주를 만들 수도 있다. 상상할 수 있는 모든 수학 법칙을 지닌 우주를 만들 수 있기 때문에, 우주도 이런 우주 중 하나가 된다. 이런 이유로 테그마크 교수는 궁극적 다중우주라는 말을 썼다. 이 다중우주는 한 가지 심오한 결론을 낸다. 만약, 만들어진 시뮬레이션 우주 안에 의식이 있는 생명체가 있다면 누군가가 자신과 자신의 우주를 만들었다는 사실을 깨달을 수 있을까는 의문이다. 또한 입장을 바꿔놓고 생각해 보면, 고차원적인 곳에 있는 누군가가 우주를 포함한 시뮬레이션 다중우주를 만들었다고 말하지 않을 수 있을지 또한 의문이다. 이 질문은 이것이 과학인지 아닌지에 대한 의문을 남긴다. 또다른 의문은 서로 다른 수학적 구조를 지닌 다양한 시뮬레이션 다중우주 가운데 진짜 우주가 따로 있는가에 대한 것이다. 만약 있다면 이들을 시뮬레이션화한 컴퓨터와 프로그래머가 쓴 수학이 진짜 우주인지, 그렇다면 시뮬레이션 다중우주는 가짜 우주인지 등 시뮬레이션 다중우주는 끝없는 의문을 남긴다.<ref name="4단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574507&cid=58941&categoryId=58957 시뮬레이션 다중우주 - 4단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
 
다중우주의 4단계 분류법 중 1단계는 관측범위 밖에 우주가 여전히 존재하며, 하나하나가 관측범위 내에서 독립된 우주를 구성한다는 주장이다. 입자의 상태, 상수, 파동함수 등 물리학적 조건을 아예 자유자재로 바꾼 우주가 존재할 수 있다. 심지어 일부러 창조할 수 있다. 4단계 우주는 테그마크 교수가 직접 제안한 아이디어로, 추상적인 수학 속에 존재하는 우주다. 하지만 수학적 구조와 실제 물리적 우주 사이에 차이가 없다면 어떨까. 수학적으로 만들 수 있는 모든 우주가 실제로 존재한다고 말할 수 있다. 궤변 같지만 아주 틀린 말은 아니다. 물질을 구성하는 것은 입자고, 입자의 성질을 규정하는 것은 입자의 종류와 입자가 만드는 장이다. 입자의 장은 장 방정식으로 결정될 것이고, 입자는 지니고 있는 에너지, 파동함수 등에 따라 설명된다. 장과 장 방정식, 입자와 입자의 파동함수 등 물리적 우주와 수학 사이의 차이를 명확히 밝히기 어렵다. 굳이 구분하자면, 물리적 우주가 있고 이를 설명하기 위해 수학을 동원했다고 볼지, 반대로 수학이 있고 이것에 대응하는 물리적 우주가 있는지의 차이 정도다. 두 가지 입장 중 물리적 우주가 있고 수학은 설명하는 것이라는 입장을 제외하면, 우주는 곧 수학과 동일해진다. 즉 수나 방정식, 함수가 존재하면 대응하는 물리적 실체를 찾을 수 있다. 실제로 입자물리학의 많은 입자를 이런 순서로 찾기도 했다. 따라서 컴퓨터로 다양한 수학적 우주를 만들어 물리적 다중우주를 만들 수도 있다. 상상할 수 있는 모든 수학 법칙을 지닌 우주를 만들 수 있기 때문에, 우주도 이런 우주 중 하나가 된다. 이런 이유로 테그마크 교수는 궁극적 다중우주라는 말을 썼다. 이 다중우주는 한 가지 심오한 결론을 낸다. 만약, 만들어진 시뮬레이션 우주 안에 의식이 있는 생명체가 있다면 누군가가 자신과 자신의 우주를 만들었다는 사실을 깨달을 수 있을까는 의문이다. 또한 입장을 바꿔놓고 생각해 보면, 고차원적인 곳에 있는 누군가가 우주를 포함한 시뮬레이션 다중우주를 만들었다고 말하지 않을 수 있을지 또한 의문이다. 이 질문은 이것이 과학인지 아닌지에 대한 의문을 남긴다. 또다른 의문은 서로 다른 수학적 구조를 지닌 다양한 시뮬레이션 다중우주 가운데 진짜 우주가 따로 있는가에 대한 것이다. 만약 있다면 이들을 시뮬레이션화한 컴퓨터와 프로그래머가 쓴 수학이 진짜 우주인지, 그렇다면 시뮬레이션 다중우주는 가짜 우주인지 등 시뮬레이션 다중우주는 끝없는 의문을 남긴다.<ref name="4단계">윤신영 기자, 〈[https://terms.naver.com/entry.naver?docId=3574507&cid=58941&categoryId=58957 시뮬레이션 다중우주 - 4단계 다중우주]〉, 《과학동아》, 2012-06-01</ref>
  

해시넷에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다 (자세한 사항은 해시넷:저작권 문서를 보세요). 저작권이 있는 내용을 허가 없이 저장하지 마세요!

취소 | 편집 도움말 (새 창에서 열림)