유전율 편집하기

이동: 둘러보기, 검색

경고: 로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다. 로그인하거나 계정을 생성하면 편집자가 아이디(ID)으로 기록되고, 다른 장점도 있습니다.

편집을 되돌릴 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 저장해주세요.
최신판 당신의 편집
104번째 줄: 104번째 줄:
 
매질에 전기장이 가해지게 되면, 전류가 흐른다. 실제 매질을 통해 흐르는 전체 전류는 전도전류와 변위전류로 구성된다. 전도전류는 하전입자가 직접 전하를 전달하여 생기는 전류고, 변위전류는 물질이 전기장에 용수철처럼 탄성반응을 하는 것이라고 생각할 수 있다. 물질에 가하는 전기장을 세게 하면 물질에 저장된 변위전류는 증가하고, 전기장을 약하게 하면 물질에 저장된 변위전류가 줄어든다. 전기적 변위는 다음 식처럼 진공에 의한 항과 물질에 의한 항으로 나눌 수 있다.
 
매질에 전기장이 가해지게 되면, 전류가 흐른다. 실제 매질을 통해 흐르는 전체 전류는 전도전류와 변위전류로 구성된다. 전도전류는 하전입자가 직접 전하를 전달하여 생기는 전류고, 변위전류는 물질이 전기장에 용수철처럼 탄성반응을 하는 것이라고 생각할 수 있다. 물질에 가하는 전기장을 세게 하면 물질에 저장된 변위전류는 증가하고, 전기장을 약하게 하면 물질에 저장된 변위전류가 줄어든다. 전기적 변위는 다음 식처럼 진공에 의한 항과 물질에 의한 항으로 나눌 수 있다.
  
:<math>\mathbf{D} = \varepsilon_{0} \mathbf{E} + \mathbf{P} = \varepsilon_{0} \mathbf{E} + \varepsilon_{0}\chi\mathbf{E} = \varepsilon_{0} \mathbf{E} \left( 1 + \chi \right)</math>
+
[[파일:전기적 변위.png|썸네일|400픽셀|가운데|]]
  
 
'''P'''는 매질의 분극'''χ'''는 전기적 감수율(electric susceptibility)이다. 따라서 물질의 상대 유전율과 감수율은 다음과 같은 관계를 갖게 된다.
 
'''P'''는 매질의 분극'''χ'''는 전기적 감수율(electric susceptibility)이다. 따라서 물질의 상대 유전율과 감수율은 다음과 같은 관계를 갖게 된다.
112번째 줄: 112번째 줄:
 
=== 복소수 유전율 ===
 
=== 복소수 유전율 ===
 
진공과는 달리, 실제 물질이 외부 장에 반응할 때는 그 장의 주파수도 중요하게 작용한다. 이 현상은 물질이 가해진 장 자체에 반응하는 것이 아니라, 장이 가해진 이후 그에 따라 발생하는 일련의 변화에 반응함을 의미한다. 따라서 유전율은 단순한 상수 ℇ 가 아니라 외부 장의 주파수 ⍵에 대한 복소함수 ℇ^(⍵)로 나타나게 된다.<ref name="위키백과"></ref>
 
진공과는 달리, 실제 물질이 외부 장에 반응할 때는 그 장의 주파수도 중요하게 작용한다. 이 현상은 물질이 가해진 장 자체에 반응하는 것이 아니라, 장이 가해진 이후 그에 따라 발생하는 일련의 변화에 반응함을 의미한다. 따라서 유전율은 단순한 상수 ℇ 가 아니라 외부 장의 주파수 ⍵에 대한 복소함수 ℇ^(⍵)로 나타나게 된다.<ref name="위키백과"></ref>
 
+
[[파일:복소수 함수.png|썸네일|400픽셀|가운데|]]
:<math>D_{0}e^{i \omega t} = \hat{\varepsilon}(\omega) E_{0} e^{i \omega t},</math>
 
  
 
여기서 '''D₀'''와 '''E₀'''은 각각 변위 장과 전기장의 크기를 나타내고, '''i= √-1'''은 허수 단위이다.
 
여기서 '''D₀'''와 '''E₀'''은 각각 변위 장과 전기장의 크기를 나타내고, '''i= √-1'''은 허수 단위이다.
119번째 줄: 118번째 줄:
 
정적인 전기장에 대한 매질의 반응은 위의 유전율에서 주파수를 0으로 극한을 취해서 표현할 수 있으며, 이 유전율을 "정적 유전율" 혹은 유전 상수 '''ℇs(또는 ℇDC'''라고 한다.
 
정적인 전기장에 대한 매질의 반응은 위의 유전율에서 주파수를 0으로 극한을 취해서 표현할 수 있으며, 이 유전율을 "정적 유전율" 혹은 유전 상수 '''ℇs(또는 ℇDC'''라고 한다.
  
:<math>\varepsilon_{s} = \lim_{\omega \rightarrow 0} \hat{\varepsilon}(\omega)</math>
+
[[파일:유전상수 식.png|썸네일|200픽셀|가운데|]]
  
 
한편 주파수가 매우 큰 경우의 복소 유전율은 보통 ℇ∞라고 쓴다. 참고로 [[플라즈마]] 주파수 이상의 매우 큰 주파수에서는, 전자가 원자로부터 떨어져나와 기체처럼 운동하면서 유전체의 성질을 이상적인 금속과 같게 만든다.
 
한편 주파수가 매우 큰 경우의 복소 유전율은 보통 ℇ∞라고 쓴다. 참고로 [[플라즈마]] 주파수 이상의 매우 큰 주파수에서는, 전자가 원자로부터 떨어져나와 기체처럼 운동하면서 유전체의 성질을 이상적인 금속과 같게 만든다.
125번째 줄: 124번째 줄:
 
정적 유전율(주파수 0)과 낮은 주파수로 진동하는 장에서의 유전율은 비슷한 값이고, 주파수가 점점 높아지면서 D와 E사이의 위상차 δ가 커지기 시작한다. 이 차이가 눈에 띄도록 나타나는 주파수는 온도와 물성에 따라 달라진다. 평균적인 장 세기 ('''E₀''')에서 '''D'''와 '''E'''는 비례하고 다음과 같은 공식이 성립한다.
 
정적 유전율(주파수 0)과 낮은 주파수로 진동하는 장에서의 유전율은 비슷한 값이고, 주파수가 점점 높아지면서 D와 E사이의 위상차 δ가 커지기 시작한다. 이 차이가 눈에 띄도록 나타나는 주파수는 온도와 물성에 따라 달라진다. 평균적인 장 세기 ('''E₀''')에서 '''D'''와 '''E'''는 비례하고 다음과 같은 공식이 성립한다.
  
:<math>\hat{\varepsilon} = \frac{D_0}{E_0}e^{i\delta} = |\varepsilon|e^{i\delta}</math>.
+
[[파일:공식1.png|썸네일|400픽셀|가운데|]]
  
 
이렇게 장의 세기가 계속 변하는 경우 유전율은 복소 유전율이므로 다음과 같이 실수부와 허수부로 나눌 수 있다.
 
이렇게 장의 세기가 계속 변하는 경우 유전율은 복소 유전율이므로 다음과 같이 실수부와 허수부로 나눌 수 있다.
  
:<math>\hat{\varepsilon}(\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega) = \frac{D_0}{E_0} \left( cos\delta - i\sin\delta \right) </math>.
+
[[파일:공식2.png|썸네일|400픽셀|가운데|]]
  
 
위 등식에서 ℇ´은 유전율의 실수부, ℇʺ은 유전율의 허수부이다. 이 허수부는 매질에 의한 에너지 흡수 속도와 연관되어 있다.
 
위 등식에서 ℇ´은 유전율의 실수부, ℇʺ은 유전율의 허수부이다. 이 허수부는 매질에 의한 에너지 흡수 속도와 연관되어 있다.

해시넷에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다 (자세한 사항은 해시넷:저작권 문서를 보세요). 저작권이 있는 내용을 허가 없이 저장하지 마세요!

취소 | 편집 도움말 (새 창에서 열림)