타원곡선암호 편집하기

이동: 둘러보기, 검색

경고: 로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다. 로그인하거나 계정을 생성하면 편집자가 아이디(ID)으로 기록되고, 다른 장점도 있습니다.

편집을 되돌릴 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 저장해주세요.
최신판 당신의 편집
22번째 줄: 22번째 줄:
 
  <math> E(F_{P}) = \left\{(x,y)|y^2=x^3+ax+b \right\} \cup \left\{O \right\} </math>
 
  <math> E(F_{P}) = \left\{(x,y)|y^2=x^3+ax+b \right\} \cup \left\{O \right\} </math>
  
=== 타원곡선상에서의 연산 ===
+
=== 타원곡선 상에서의 연산 ===
 
타원 곡선을 이용한 암호화를 이해하기 위해서는 타원곡선 상의 덧셈 연산부터 이해를 해야 한다. 따라서 기하학적으로 설명하자면 다음과 같다. 타원곡선 상의 P와 Q의 덧셈 연산은 점 P와 Q를 지나는 직선이 타원과 만나는 제3의 교점을 x축으로 대칭 시킨 점을 P+Q=R로 정의한다. P와 Q가 같은 경우에는 P+P 연산이 되므로 P 점에서 접선을 그었을 때 타원과 만나는 제3의 교점을 x축으로 대칭 시킨 점에 해당한다. 또한, 무한대 값 0이 가능하고, P+(-P)=0 으로 P와 x축 -P가 덧셈한 결괏값은 무한대 값이다.
 
타원 곡선을 이용한 암호화를 이해하기 위해서는 타원곡선 상의 덧셈 연산부터 이해를 해야 한다. 따라서 기하학적으로 설명하자면 다음과 같다. 타원곡선 상의 P와 Q의 덧셈 연산은 점 P와 Q를 지나는 직선이 타원과 만나는 제3의 교점을 x축으로 대칭 시킨 점을 P+Q=R로 정의한다. P와 Q가 같은 경우에는 P+P 연산이 되므로 P 점에서 접선을 그었을 때 타원과 만나는 제3의 교점을 x축으로 대칭 시킨 점에 해당한다. 또한, 무한대 값 0이 가능하고, P+(-P)=0 으로 P와 x축 -P가 덧셈한 결괏값은 무한대 값이다.
 
[[파일:타원곡선상의 덧셈 연산.png|300픽셀|오른쪽|'''타원곡선 상의 덧셈 연산''']]
 
[[파일:타원곡선상의 덧셈 연산.png|300픽셀|오른쪽|'''타원곡선 상의 덧셈 연산''']]

해시넷에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다 (자세한 사항은 해시넷:저작권 문서를 보세요). 저작권이 있는 내용을 허가 없이 저장하지 마세요!

취소 | 편집 도움말 (새 창에서 열림)