검수요청.png검수요청.png

패킷

해시넷
218.146.11.126 (토론)님의 2019년 7월 26일 (금) 14:31 판 (종류)
이동: 둘러보기, 검색

패킷(Packet)은 네트워크를 통해 전송하기 쉽도록 자른 데이터의 전송단위이며, 본래는 소포를 뜻하는 용어로, 소화물을 뜻하는 패키지(package)와 덩어리를 뜻하는 버킷(bucket)의 합성어이다. 데이터 전송에서 송신측과 수신측에 의하여 하나의 단위로 취급되어 전송되는 집합체를 의미한다. 분할된 각각의 패킷에는 별도의 번호가 붙여지고 목적지의 인터넷 주소가 기록되며, 에러 체크 데이터도 포함된다.

개요

패킷(Packet)은 정보 기술에서 패킷 방식의 컴퓨터 네트워크가 전달하는 데이터의 형식화된 블록이다. 패킷은 제어 정보와 사용자 데이터로 이루어지며, 이는 페이로드라고도 한다. 패킷을 지원하지 않는 컴퓨터 통신 연결은 단순히 바이트, 문자열, 비트를 독립적으로 연속하여 데이터를 전송한다. 데이터가 패킷으로 형식이 바뀔 때, 네트워크는 장문 메시지를 더 효과적이고 신뢰성 있게 보낼 수 있다.[1]

주로 데이터 통신 분야에서 사용되는 용어인데, 데이터 통신 시스템 중에서 컴퓨터는 데이터를 중계하는 역할을 갖는다. 문자나 숫자의 정보인 메시지를 하나의 컴퓨터에서 다른 컴퓨터로 보낸다. 이 메시지에는 소포 우편물과 마찬가지로 화물 부분과 수신처가 붙어 있는데, 데이터 통신, 교환 시스템에서 다루어지는 데이터 단위로, 헤더와 데이터부가 바로 그것에 해당되는 것이며, 헤더는 주로 이 패킷의 수신지에 관한 정보를 포함한다. 패킷의 최대 길이는 각 시스템에서 정해져 있으며 이 크기보다 긴 메시지는 몇 개의 패킷으로 분할하여야 한다. 이렇게 해두면 메시지는 분실될 염려가 없고 확실하게 상대편에 머무른다. 특정의 형식으로 배열되고, 전송의 처리 과정에 의해서 정해지는 하나의 정리로서 전송되는 데이터 및 제어 비트열이다.[2]

역사

특징

파일을 분할해서 전송하지만 수신하는 곳에서는 원래의 파일로 다시 재조립된다. 헤더와 데이터·테레일러로 이루어져 있는데, 헤더에는 데이터가 전달될 주소와 순서 등이 기록되고, 테레일러에는 에러 정보가 기록된다. 보통 2계층으로 내려가기 전까지 3·4계층의 데이터 단위는 패킷이라고 하고, 1·2 계층의 데이터 단위는 프레임이라고 한다. 일반적으로 128바이트가 표준이지만 32·64·256바이트와 옥텟 등 편의에 따라 크기를 바꿀 수 있다.

내부에 상대방의 주소를 갖고 있기 때문에 신뢰도가 높으며, 에러를 체크하는 등 고품질의 전송을 제공할 수 있는 장점이 있다. 또 통신망을 경제적으로 구성할 수 있고, 전송속도와 코드를 바꿀 수 있으므로 서로 다른 기종을 사용하는 사용자들끼리도 통신이 가능하다. 다양한 부가 서비스도 가능하며, 국제적으로 표준화된 프로토콜을 사용하여 인터넷 상에서 데이터를 전송할 때 매우 효율적이다. 패킷형 단말기와 교환기 사이의 인터페이스에 사용되는 권장 프로토콜은 X.25이며, 비표준 단말기와의 인터페이스에는 X.3과 X.28이다.

종류

IP 패킷

인터넷에서 표준 인터넷 프로토콜(IP)에 의해 전송되는 데이터 묶음. 각 패킷은 시스템 제어 정보와 지정 주소가 담긴 헤더를 가지고 전송된다. 일정한 ATM 「셀(cells)」과는 달리 IP패킷은 전송되는 데이터에 따라 길이가 다양하다. IP 패킷 은 헤더 섹션과 데이터 섹션으로 구성되는데, IP 패킷에는 데이터 섹션 다음에 데이터 체크섬이나 다른 꼬리말이 없다. 일반적으로 링크 계층은 대부분의 오류를 탐지하는 CRC 바닥 글이 있는 프레임에 IP 패킷을 캡슐화하며 일반적으로 종단 간 TCP 계층 체크섬은 대부분의 다른 오류를 감지한다.

  • IPv4

인터넷 프로토콜 버전 4(IPv4)는 인터넷 프로토콜(IP) 의 네 번째 버전이다 . 인터넷 및 기타 패킷 교환망의 표준 기반 인터 워킹 방법의 핵심 프로토콜 중 하나이다. IPv4는 1983 년 ARPANET 에서 처음으로 프로덕션 용으로 배포 된 버전이다. IPv6 는 계속해서 후속 프로토콜 인 IPv6의 배포에도 불구하고 오늘날 대부분의 인터넷 트래픽을 라우팅한다. IPv4는 IETF 게시 RFC 791 (1981년 9 월)에 설명되어 있으며 이전 정의(RFC 760 ,1980년 1월)를 대체합니다.[3]

  • IPv6

Pv6은 패킷 교환 인터 네트워킹을 위한 인터넷 계층 프로토콜이며 이전 버전의 프로토콜 인 인터넷 프로토콜 버전 4 (IPv4) 에서 개발 된 디자인 원칙을 준수하면서 여러 IP 네트워크에서 엔드 투 엔드 데이터 그램 전송을 제공한다. 더 많은 주소를 제공하는 것 외에도 IPv6은 IPv4에없는 기능을 구현한다. 네트워크 연결 제공자를 변경할 때 주소 구성, 네트워크 번호 재 지정 및 라우터 공지 사항을 단순화한다. 패킷 조각화에 대한 책임을 종점에 배치하여 라우터에서 패킷 처리를 단순화합니다. IPv6 서브넷 크기는 주소의 호스트 식별자 부분 크기를 64 비트로 고정하여 표준화된다. 네트워크 보안은 IPv6 아키텍처의 디자인 요구 사항이었으며 원래 IPsec 사양을 포함했다.

패킷교환(PSN)

네트워크 계층의 가장 중요한 역할은 앞서 언급한 것처럼 패킷의 전송 경로를 결정하는 것이다. 데이터를 패킷 교환 방식으로 전송하는 네트워크는 가상 회선과 데이터그램이라는 두 가지 전송 방식을 지원한다. 가상 회선은 데이터를 패킷 단위로 나누어 전송하지만 송수신 호스트 사이에 가상 연결을 설정하므로 모든 패킷의 전달 경로가 같다. 반면, 데이터그램은 패킷의 경로 선택이 독립적이다. 패킷교환에서는 정보가 교환기의 기억장치에 축적되기 때문에 1개의 통신회선에서 통신의 공백시간을 융통하고 있어서 회선의 사용효율을 높이는 패킷 다중통신을 할 수 있다. 패킷교환 서비스의 기본적인 통신 형태는 상대 선택신호에 의해서 상대를 선택하는 것이지만 통신상대가 고정되는 경우도 고려하여 임의의 상대를 선택하여 통신할 수 있는 상대 선택급과 통신상대가 항상 특정한 상대로 고정되는 상대고정급 2가지의 접속급이 마련되어 있다. CCITT 권고에서는 이 2가지의 접속급을 각각 버추얼 콜(VC), 퍼머넌트 버추얼 서킷(PVC)이라 한다.[4]

  • 가상회선

일반적으로 가상 회선(Virtual Circuit) 방식은 연결형 서비스를 지원하기 위한 기능으로, 하나의 연결을 통해 전송되는 패킷의 경로는 동일하다. 송수신 호스트 사이에 설정된 가상의 단일 파이프를 통해 송신 호스트가 입력단으로 패킷을 송신하고, 수신 호스트가 출력단에서 패킷을 수신한다. 따라서 모든 패킷이 하나의 파이프로 표현되는 동일 경로로 전송되므로 패킷이 도착하는 순서가 보낸 순서와 같다.

가상 회선 방식에서 패킷을 전송하는 방식을 시간의 흐름에 따라 보여준다. 가상 회선을 통해 패킷이 동일한 경로로 전송됨을 알 수 있다. 이처럼 똑같은 전송 경로로 패킷을 전송하면 패킷의 도착 순서와 출발 순서가 같다.

가상 회선 방식으로 패킷을 전송하는 원리는 회선 교환 방식과 비슷하다. 가상 회선이라는 용어가 가상적인 회선을 뜻하므로, 두 방식은 동작 원리가 비슷하다. 그런데 가상 회선 방식은 패킷 교환 방식을 기반으로 하므로 데이터의 전송 단위가 패킷 단위로 이루어지는 반면, 회선 교환 방식은 패킷 기능을 지원하지 않는다. 이는 두 교환 방식을 구분하는 중요한 차이점이다.

  • 데이터그램

패킷 교환에서 비연결형 서비스를 이용해 패킷을 독립적으로 전송하는 것을 데이터그램(Datagram) 방식이라고 한다. 데이터그램 방식은 패킷이 전달되기 전에 연결을 설정하는 과정이 없으므로, 경로를 미리 할당하지 않는다. 따라서 전송되는 패킷들이 독립 경로로 전달된다. 일반적으로 데이터그램 방식은 전송할 정보의 양이 적거나 상대적으로 신뢰성이 중요하지 않은 환경에서 사용한다.

데이터그램 방식에서 패킷을 전송하는 과정을 시간의 흐름에 따라 보여준다. 가상 회선 방식과 달리 설정된 연결 경로가 없으므로, 송신 호스트가 전송한 패킷이 독립적으로 라우팅됨을 알 수 있다. 송신 호스트가 전송한 패킷은 보낸 순서와 무관한 순서로 수신 호스트에게 전달되므로 도착 순서가 바뀔 수 있다.

패킷은 1, 2번 패킷과 다른 경로를 선택할 수 있으며, 각 전송 경로의 속도는 네트워크 혼잡도 등 때문에 가변적이다. 따라서 목적지에 도착하는 순서를 미리 예측할 수 없고, 송신 호스트에서 늦게 출발한 3번 패킷이 2번 패킷보다 먼저 도착할 수 있다.

활용

  • 패킷의 구성
  1. 헤더(머리) + 페이로드(내용/데이터) + 트레일러(꼬리)
  2. 패킷 선두(헤더)에는, 패킷의 주소(송수신 주소) 등 주요 제어 정보들이 포함되는것이 일반적
  3. 패킷 후미(트레일러)에는, 패킷 에러 검출 등에 사용
  4. 패킷 꼬리는 없는 경우도 많다.
  • 전달 방식
  1. 패킷은 통신망을 통하여 노드에서 노드로 전해짐으로써 전송
  2. 패킷의 전달은 통상적으로 매 경유지 마다 축적교환 방식으로 목적지까지 전달
  • 패킷 시작부 동기화
  1. 각 패킷은 오직 동기화를 위해서만 사용되는 Preamble이라 불리는 비트열로 시작
  2. 이 경우 Preamble은 통상 2계층(링크계층)에서 사용

대안

사례

각주

  1. 네트워크 패킷〉, 《위키백과》
  2. 패킷〉, 《지식백과》
  3. IPv4〉, 《위키피디아》
  4. 패킷 교환〉, 《지식백과》

참고자료

같이 보기

  검수요청.png검수요청.png 이 패킷 문서는 블록체인 기술에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.