의견.png

"폴리머"의 두 판 사이의 차이

해시넷
이동: 둘러보기, 검색
잔글
잔글
1번째 줄: 1번째 줄:
'''폴리머'''(polymer)는 단위체가 반복되어 연결된 고분자의 한 종류이다. 그리스어의  많다(poly)와 부분(meros)의 합성어로서  '''고분자화합물''', '''중합체'''라고도 부른다. 폴리머는 분자의 크기가 매우 클 뿐만 아니라 같은 부분이 반복된 구조를 갖고 있다. 폴리머  반대말은 monomer(단량체)이다. 모노머들이 반복적으로 연결되는 반응을 polymerization(중합)이라고 하고 그 결과물로 생긴 큰 분자를 폴리머라고 한다.  
+
'''폴리머'''(polymer)는 단위체가 반복되어 연결된 [[고분자]]의 한 종류이다. 그리스어의  많다(poly)와 부분(meros)의 합성어로서  '''고분자화합물''', '''중합체'''라고도 부른다. 대개는 화학적 합성에 의한 고분자를 '중합체'라 칭한다. '중합체'(polymer)라는 용어는 1833년에 [[바젤리우스]](Jons Jacob Berzelius)에 의하여 처음 사용되었다. 본래는 'Macromolecule'(고분자, 독일어에서 기원함 'Makromolekül')이 1900년대 이전에 주로 쓰이던 용어였으나, 차후 주로 화학적 결합에 의하여 동일한 단위체가 계속 반복된 형태를 '중합체'(polymer)로 칭하게 되었다.
 +
 
 +
폴리머는 분자의 크기가 매우 클 뿐만 아니라 같은 부분이 반복된 구조를 갖고 있다. 폴리머  반대말은 monomer(단량체)이다. 모노머들이 반복적으로 연결되는 반응을 polymerization(중합)이라고 하고 그 결과물로 생긴 큰 분자를 폴리머라고 한다.  
  
 
폴리머는 우리 생활에 너무 많이 관계되어 있고 폴리머가 없는 세상은 상상도 할 수 없다. 사실 우리 주위에는 폴리머가 아닌 것이 오히려 찾기 어려울 정도로 폴리머가 많고 우리 몸 자체도 폴리머이다. 그래서 [[금속]]이나 [[세라믹]]보다는 [[플라스틱]]을 만질 때 더 촉감이 좋고 친근감을 느끼는 것이다.<ref>유한지식IN, 〈[https://tulipblossom.tistory.com/2 polymer란 무엇인가?]〉, 《티스토리》, 2020-07-17</ref>  
 
폴리머는 우리 생활에 너무 많이 관계되어 있고 폴리머가 없는 세상은 상상도 할 수 없다. 사실 우리 주위에는 폴리머가 아닌 것이 오히려 찾기 어려울 정도로 폴리머가 많고 우리 몸 자체도 폴리머이다. 그래서 [[금속]]이나 [[세라믹]]보다는 [[플라스틱]]을 만질 때 더 촉감이 좋고 친근감을 느끼는 것이다.<ref>유한지식IN, 〈[https://tulipblossom.tistory.com/2 polymer란 무엇인가?]〉, 《티스토리》, 2020-07-17</ref>  
  
== 개요 ==
+
중합체의 분자가 결합한 모양에 따라 사슬모양중합체, 그물모양중합체 등으로 나눠진다. 중합체 중 합성중합체로 [[나일론]], [[PVC]]등 많은 플라스틱이 만들어 졌고 천연중합체로는 녹말, 고무 등이 있다.
폴리머는 단위체가 반복되어 연결된 [[고분자]]의 한 종류이다. 대개는 화학적 합성에 의한 고분자를 '중합체'라 칭한다. '중합체'(polymer)라는 용어는 1833년에 바젤리우스(Jons Jacob Berzelius)에 의하여 처음 사용되었다. 본래는 'Macromolecule'(고분자, 독일어에서 기원함 'Makromolekül')이 1900년대 이전에 주로 쓰이던 용어였으나, 차후 주로 화학적 결합에 의하여 동일한 단위체가 계속 반복된 형태를 '중합체'(polymer)로 칭하게 되었다.  
+
 
 +
== 상세 ==
 +
물질의 성질을 유지하면서 가장 작은 입자는 [[분자]]이다. 물론 분자는 원자로 구성되며,  원자는 다시 전자와 원자핵으로 나눠지고 다시 쿼크같은 것으로 세분화 된다. 분자를 구성하는 각 원자간에 서로 잡아당기는 전기적인 힘이 존재하는데 이를 [[결합력]](bond Strength)이라 한다. 결합된 분자에 열과 압력을 가하면 결합이 끊어지면서 다른 분자와 새로운 결합을 시킬수 있어 고분자물질을 만들 수 있다.
 +
 
 +
이렇게 생성된 화합물을 분자량에 따라 분류해 보면, 분자량이 적은 저분자 화합물과 분자량이 매우 큰 고분자 화합물로 나눌 수 있다. 일반적으로 유기 화합물의 분자량은 100 ~300 사이에 있는데, 대부분 500 이하를 저분자 화합물이라 하며, 고분자 화합물은 10,000 이상의 것이 보통이고 수만에서 수십 만에 이른다. 하나의 개체를  단분자(monomer)라고 하며 단분자가 모여  복잡한 구조를 가지는 고분자(Polymer)가 된다.
 +
 
 +
모노머(단분자)를  반응시켜 폴리머(고분자)로 만들 수 있는데  이런 반응을 중합(Polymerization)반응이라 한다. 세상에는 분자가 기본 단위의 반복으로  이들 분자들이 서로 중합하여 이루어진 화합물이 많다. 즉 염화비닐, 나일론, 합성고무,  네오프렌, PVC, 폴리스티렌, 폴리에틸렌, 실리콘 등이 있고 이것을 중합체(重合體)라고도 한다.
 +
사람몸의 세포에도 고분자가 존재하는데,  우리가 잘아는  단백질,지방,탄수화물,핵산(DNA)이 있다.
  
중합체의 분자가 결합한 모양에 따라 사슬모양중합체, 그물모양중합체 등으로 나눠진다. 중합체 중 합성중합체로 [[나일론]], [[PVC]]등 많은 플라스틱이 만들어 졌고 천연중합체로는 녹말, 고무 등이 있다.
+
폴리머(polyer)는 원자들이 전자를 공유할 때 화학적 고리로 연결되는 똑같은 구조의 단위로 이루어진 고분자(거대분자)들이다. [[아미노산]]이 모노머(monomer)에 해당하고  아미노산이 결합된 단백질이  중합체(polymer)에 해당된다
  
 
== 합성 및 물리적 특징 ==
 
== 합성 및 물리적 특징 ==
12번째 줄: 21번째 줄:
  
 
중합체의 물리적 특성을 결정하는 가장 중요한 두 개의 물리적 변수는 유리전이온도 (Tg)와 녹는점 (Tm)이다. 이 두 개의 변수는 각 중합체의 사용 용도를 결정하게 된다. 유리전이온도는 중합체가 액체 상태에서 유리 처럼 과냉각액체 상태로 변하게 되는 온도를 말하는 것으로서, 중합체가 과냉각액체가 되기 시작하면 딱딱해지며 더 이상 흐르지 않는다. 이것은 단지 중합체의 점도가 매우 높아진 것으로서, 물질이 결정을 이루어 점도가 무한대로 커지는 것과는 다르다. 즉, 낮은 데보라수에서는 흐르지 않지만, 높은 데보라수에서는 흐르는 것을 관찰할 수 있다. 폴리스타이렌이 섭씨 100도 정도에서 유리전이를 일으키는데, 100도 이상에서는 액체이고 그 이하에서는 흐르지 않는다. 녹는점은 중합체 분자들끼리 결정을 만드는 온도이다. 그러나 이 결정구조는 중합체의 모든 부분으로 퍼져나가지 못하며 국지적으로 일어나게 된다. 즉, 녹는점은 유리전이 온도보다 낮으므로 과냉각된 액체상태의 중합체 내부에 작은 중합체의 분자 혹은 그 부분들로 이루어진 결정들이 생성되는 구조가 된다.
 
중합체의 물리적 특성을 결정하는 가장 중요한 두 개의 물리적 변수는 유리전이온도 (Tg)와 녹는점 (Tm)이다. 이 두 개의 변수는 각 중합체의 사용 용도를 결정하게 된다. 유리전이온도는 중합체가 액체 상태에서 유리 처럼 과냉각액체 상태로 변하게 되는 온도를 말하는 것으로서, 중합체가 과냉각액체가 되기 시작하면 딱딱해지며 더 이상 흐르지 않는다. 이것은 단지 중합체의 점도가 매우 높아진 것으로서, 물질이 결정을 이루어 점도가 무한대로 커지는 것과는 다르다. 즉, 낮은 데보라수에서는 흐르지 않지만, 높은 데보라수에서는 흐르는 것을 관찰할 수 있다. 폴리스타이렌이 섭씨 100도 정도에서 유리전이를 일으키는데, 100도 이상에서는 액체이고 그 이하에서는 흐르지 않는다. 녹는점은 중합체 분자들끼리 결정을 만드는 온도이다. 그러나 이 결정구조는 중합체의 모든 부분으로 퍼져나가지 못하며 국지적으로 일어나게 된다. 즉, 녹는점은 유리전이 온도보다 낮으므로 과냉각된 액체상태의 중합체 내부에 작은 중합체의 분자 혹은 그 부분들로 이루어진 결정들이 생성되는 구조가 된다.
 +
 +
== 리튬 폴리머 배터리 ==
 +
[[리튬 폴리머 배터리]]는 폴리머 전해질을 사용하는 [[리튬이온 배터리]] 중 하나이다. 리튬 폴리머 배터리는 전해질이 [[고체]] 또는 [[젤]] 형태이기 때문에 불의의 사고로 전지가 파손되어도 전해질이 밖으로 새어 나가지 않아 발화하거나 폭발할 우려가 거의 없어 안정성이 확보된다. 에너지 효율도 리튬이온 배터리보다 높다. 또한 견고한 금속 외장을 사용할 필요가 없고, 용도에 따라 다양한 크기와 모양으로 제조할 수 있으며 3mm이하 두께로 제작이 가능하다. 무게도 30%이상 줄일 수 있다. 특히 제조공정이 리튬이온전지에 비하여 비교적 쉬워, 대량생산 및 대형전지 제조가 가능하다.
 +
 +
=== 고분자 전해질 ===
 +
고분자 전해질은 크게 아래와 같이 세 분류로 나눌 수 있다.
 +
* 순수 고체 고분자 전해질계
 +
* 젤-고분자 전해질계
 +
* Hybrid 고분자 전해질계
 +
 +
순수 고분자 전해질계는 Hydro-Quebec사에서 처음 시도한 것으로 높은 분자량의 polyethers(homo- 혹은 co-polymers)와 plasticizing염, 때로는 약간의 액체가소제를 혼합하여 제조한다. 이러한 전해질은 용매증발 피복법으로 박막을 제조한다. 이러한 종류의 고분자 전해질로는 polyether grafted polyether, polysiloxane, polyphosphazene 등이 있으며, 이러한 전해질의 이온전도는 폴리머의 local segmental motion으로 이루어진다. 젤-고분자 전해질은 순수-고분자 전해질에 비하여 상온에서의 높은 이온전도도와 불량한 기계적 성질을 나타내는 것으로 많은 양의 액체가소제와 혹은 용매를 폴리머 매트릭스에 첨가하여 폴리머호스트구조와 안정한 젤을 형성하도록 하는 것이다. 젤-고분자 전해질의 기계적 물성을 향상시키기 위하여 cross-linked나 thermoset할 수 있는 물질들을 첨가하고 있다. 이러한 고분자 전해질의 이온전도는 액체상에 있는 이온종의 이동도에 의하여 이루어진다. 따라서 이온전도도는 액체용매에서의 이온전도도에 접근하게 되며 전기화학적 안정성은 액체 전해질에서와 유사하게 된다. 이처럼 젤-고분자 전해질은 높은 이온이동도와 높은 전하수송물질 농도를 나타 내어 주된 성능향상을 이루었고, 또한 저온특성도 우수하게 되었다.
 +
 +
근래 많은 연구가 이루어진 고분자 전해질의 분류 및 최근 개발된 고분자 전해질의 조성을 Table 1, Table 2에 각각 나타내었다. Hybrid 고분자 전해질계는 고분자 매트릭스를 submicron이하로 다공성하게 만들어 유기용매 전해질을 이 작은 기공에 주입시켜 제조한다. 이 작은 기공에(<submicron) 들어간 유기용매 전해질은 누액이 되지 않고 아주 안전한 전해질로 사용할 수가 있다. 이 전해질은 이온전도도가 유기용매 전해질의 이온전도도와 같은 특성을 갖고 있고, 용이하게 제작할 수 있는 것이 장점이라고 볼 수 있다.
  
 
{{각주}}
 
{{각주}}

2021년 6월 10일 (목) 10:01 판

폴리머(polymer)는 단위체가 반복되어 연결된 고분자의 한 종류이다. 그리스어의 많다(poly)와 부분(meros)의 합성어로서 고분자화합물, 중합체라고도 부른다. 대개는 화학적 합성에 의한 고분자를 '중합체'라 칭한다. '중합체'(polymer)라는 용어는 1833년에 바젤리우스(Jons Jacob Berzelius)에 의하여 처음 사용되었다. 본래는 'Macromolecule'(고분자, 독일어에서 기원함 'Makromolekül')이 1900년대 이전에 주로 쓰이던 용어였으나, 차후 주로 화학적 결합에 의하여 동일한 단위체가 계속 반복된 형태를 '중합체'(polymer)로 칭하게 되었다.

폴리머는 분자의 크기가 매우 클 뿐만 아니라 같은 부분이 반복된 구조를 갖고 있다. 폴리머 반대말은 monomer(단량체)이다. 모노머들이 반복적으로 연결되는 반응을 polymerization(중합)이라고 하고 그 결과물로 생긴 큰 분자를 폴리머라고 한다.

폴리머는 우리 생활에 너무 많이 관계되어 있고 폴리머가 없는 세상은 상상도 할 수 없다. 사실 우리 주위에는 폴리머가 아닌 것이 오히려 찾기 어려울 정도로 폴리머가 많고 우리 몸 자체도 폴리머이다. 그래서 금속이나 세라믹보다는 플라스틱을 만질 때 더 촉감이 좋고 친근감을 느끼는 것이다.[1]

중합체의 분자가 결합한 모양에 따라 사슬모양중합체, 그물모양중합체 등으로 나눠진다. 중합체 중 합성중합체로 나일론, PVC등 많은 플라스틱이 만들어 졌고 천연중합체로는 녹말, 고무 등이 있다.

상세

물질의 성질을 유지하면서 가장 작은 입자는 분자이다. 물론 분자는 원자로 구성되며, 원자는 다시 전자와 원자핵으로 나눠지고 다시 쿼크같은 것으로 세분화 된다. 분자를 구성하는 각 원자간에 서로 잡아당기는 전기적인 힘이 존재하는데 이를 결합력(bond Strength)이라 한다. 결합된 분자에 열과 압력을 가하면 결합이 끊어지면서 다른 분자와 새로운 결합을 시킬수 있어 고분자물질을 만들 수 있다.

이렇게 생성된 화합물을 분자량에 따라 분류해 보면, 분자량이 적은 저분자 화합물과 분자량이 매우 큰 고분자 화합물로 나눌 수 있다. 일반적으로 유기 화합물의 분자량은 100 ~300 사이에 있는데, 대부분 500 이하를 저분자 화합물이라 하며, 고분자 화합물은 10,000 이상의 것이 보통이고 수만에서 수십 만에 이른다. 하나의 개체를 단분자(monomer)라고 하며 단분자가 모여 복잡한 구조를 가지는 고분자(Polymer)가 된다.

모노머(단분자)를 반응시켜 폴리머(고분자)로 만들 수 있는데 이런 반응을 중합(Polymerization)반응이라 한다. 이 세상에는 분자가 기본 단위의 반복으로 이들 분자들이 서로 중합하여 이루어진 화합물이 많다. 즉 염화비닐, 나일론, 합성고무, 네오프렌, PVC, 폴리스티렌, 폴리에틸렌, 실리콘 등이 있고 이것을 중합체(重合體)라고도 한다. 사람몸의 세포에도 고분자가 존재하는데, 우리가 잘아는 단백질,지방,탄수화물,핵산(DNA)이 있다.

폴리머(polyer)는 원자들이 전자를 공유할 때 화학적 고리로 연결되는 똑같은 구조의 단위로 이루어진 고분자(거대분자)들이다. 아미노산이 모노머(monomer)에 해당하고 아미노산이 결합된 단백질이 중합체(polymer)에 해당된다

합성 및 물리적 특징

'중합체'는 대개 어떠한 단위체를 사용하였는가에 따라 다른 성질을 갖는다. 이와 같이 단위체인 스타이렌이 반복하여 연결된 구조를 만듦으로서 중합체를 합성하게 된다. 산업적으로 가장 많이 합성되는 중합체는 폴리에틸렌이며, 역사적으로 가장 유명한 예는 합성고무인 폴리아이소프렌이다. 폴리아이소프렌의 경우 분자 구조가 고무나무 수액에서 나오는 라텍스와 동일한 구조를 가지는 물질로서, 자연에서 얻어야만 했던 물질을 인간이 스스로 합성해낼 수 있었던 하나의 좋은 예이다.

중합체의 물리적 특성을 결정하는 가장 중요한 두 개의 물리적 변수는 유리전이온도 (Tg)와 녹는점 (Tm)이다. 이 두 개의 변수는 각 중합체의 사용 용도를 결정하게 된다. 유리전이온도는 중합체가 액체 상태에서 유리 처럼 과냉각액체 상태로 변하게 되는 온도를 말하는 것으로서, 중합체가 과냉각액체가 되기 시작하면 딱딱해지며 더 이상 흐르지 않는다. 이것은 단지 중합체의 점도가 매우 높아진 것으로서, 물질이 결정을 이루어 점도가 무한대로 커지는 것과는 다르다. 즉, 낮은 데보라수에서는 흐르지 않지만, 높은 데보라수에서는 흐르는 것을 관찰할 수 있다. 폴리스타이렌이 섭씨 100도 정도에서 유리전이를 일으키는데, 100도 이상에서는 액체이고 그 이하에서는 흐르지 않는다. 녹는점은 중합체 분자들끼리 결정을 만드는 온도이다. 그러나 이 결정구조는 중합체의 모든 부분으로 퍼져나가지 못하며 국지적으로 일어나게 된다. 즉, 녹는점은 유리전이 온도보다 낮으므로 과냉각된 액체상태의 중합체 내부에 작은 중합체의 분자 혹은 그 부분들로 이루어진 결정들이 생성되는 구조가 된다.

리튬 폴리머 배터리

리튬 폴리머 배터리는 폴리머 전해질을 사용하는 리튬이온 배터리 중 하나이다. 리튬 폴리머 배터리는 전해질이 고체 또는 형태이기 때문에 불의의 사고로 전지가 파손되어도 전해질이 밖으로 새어 나가지 않아 발화하거나 폭발할 우려가 거의 없어 안정성이 확보된다. 에너지 효율도 리튬이온 배터리보다 높다. 또한 견고한 금속 외장을 사용할 필요가 없고, 용도에 따라 다양한 크기와 모양으로 제조할 수 있으며 3mm이하 두께로 제작이 가능하다. 무게도 30%이상 줄일 수 있다. 특히 제조공정이 리튬이온전지에 비하여 비교적 쉬워, 대량생산 및 대형전지 제조가 가능하다.

고분자 전해질

고분자 전해질은 크게 아래와 같이 세 분류로 나눌 수 있다.

  • 순수 고체 고분자 전해질계
  • 젤-고분자 전해질계
  • Hybrid 고분자 전해질계

순수 고분자 전해질계는 Hydro-Quebec사에서 처음 시도한 것으로 높은 분자량의 polyethers(homo- 혹은 co-polymers)와 plasticizing염, 때로는 약간의 액체가소제를 혼합하여 제조한다. 이러한 전해질은 용매증발 피복법으로 박막을 제조한다. 이러한 종류의 고분자 전해질로는 polyether grafted polyether, polysiloxane, polyphosphazene 등이 있으며, 이러한 전해질의 이온전도는 폴리머의 local segmental motion으로 이루어진다. 젤-고분자 전해질은 순수-고분자 전해질에 비하여 상온에서의 높은 이온전도도와 불량한 기계적 성질을 나타내는 것으로 많은 양의 액체가소제와 혹은 용매를 폴리머 매트릭스에 첨가하여 폴리머호스트구조와 안정한 젤을 형성하도록 하는 것이다. 젤-고분자 전해질의 기계적 물성을 향상시키기 위하여 cross-linked나 thermoset할 수 있는 물질들을 첨가하고 있다. 이러한 고분자 전해질의 이온전도는 액체상에 있는 이온종의 이동도에 의하여 이루어진다. 따라서 이온전도도는 액체용매에서의 이온전도도에 접근하게 되며 전기화학적 안정성은 액체 전해질에서와 유사하게 된다. 이처럼 젤-고분자 전해질은 높은 이온이동도와 높은 전하수송물질 농도를 나타 내어 주된 성능향상을 이루었고, 또한 저온특성도 우수하게 되었다.

근래 많은 연구가 이루어진 고분자 전해질의 분류 및 최근 개발된 고분자 전해질의 조성을 Table 1, Table 2에 각각 나타내었다. Hybrid 고분자 전해질계는 고분자 매트릭스를 submicron이하로 다공성하게 만들어 유기용매 전해질을 이 작은 기공에 주입시켜 제조한다. 이 작은 기공에(<submicron) 들어간 유기용매 전해질은 누액이 되지 않고 아주 안전한 전해질로 사용할 수가 있다. 이 전해질은 이온전도도가 유기용매 전해질의 이온전도도와 같은 특성을 갖고 있고, 용이하게 제작할 수 있는 것이 장점이라고 볼 수 있다.

각주

  1. 유한지식IN, 〈polymer란 무엇인가?〉, 《티스토리》, 2020-07-17

참고자료

같이 보기


  의견.png 이 폴리머 문서는 배터리에 관한 토막글입니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 이 문서의 내용을 채워주세요.